教师白洁少妇系列h,小小水蜜桃免费影院,丝袜美腿亚洲一区二区,精品国产污污免费网站入口,中文在线最新版天堂

媒體/合作/投稿:010-65815687 點擊這里給我發消息  發郵件

為(wei)助力環(huan)保(bao)產業(ye)高質量發展(zhan),谷騰環(huan)保(bao)網隆重推(tui)出《環(huan)保(bao)行(xing)業(ye)“專精(jing)特(te)新”技術與企(qi)業(ye)新媒體傳播(bo)計劃》,七大(da)新媒體平臺,100萬(wan)次的曝光(guang)率,為(wei)環(huan)保(bao)行(xing)業(ye)“專精(jing)特(te)新”企(qi)業(ye)帶來最大(da)傳播(bo)和品牌價值。

    
谷騰環保網 > 新聞信息 > 正文

地下水微生物學研究進展綜述

更新(xin)時間:2009-12-14 16:00 來源: 作者: 閱讀:2382 網友評論0

1 引 言

地下水(shui)系(xi)統(tong)具(ju)備(bei)了微(wei)(wei)(wei)生(sheng)物(wu)生(sheng)長發育所(suo)(suo)需的(de)(de)營(ying)養(yang)、水(shui)分、酸(suan)堿度(du)、滲透(tou)壓和(he)溫度(du)等(deng)(deng)條(tiao)件(jian),為(wei)微(wei)(wei)(wei)生(sheng)物(wu)提供(gong)了良好的(de)(de)生(sheng)存(cun)場所(suo)(suo)。微(wei)(wei)(wei)生(sheng)物(wu)(主(zhu)要指各種細菌(jun)(jun)(jun)菌(jun)(jun)(jun)群,如異(yi)養(yang)菌(jun)(jun)(jun)、自(zi)養(yang)菌(jun)(jun)(jun)、好氧菌(jun)(jun)(jun)、厭氧菌(jun)(jun)(jun)等(deng)(deng))成為(wei)地下水(shui)生(sheng)態系(xi)統(tong)中(zhong)主(zhu)要生(sheng)命組分,是地下水(shui)演(yan)(yan)化(hua)過(guo)程的(de)(de)重要影(ying)響因子(zi),在地下水(shui)系(xi)統(tong)的(de)(de)能量轉(zhuan)換(huan)、物(wu)質循環(huan)、營(ying)養(yang)輸送、信息貯存(cun)以及元素形態的(de)(de)轉(zhuan)化(hua)、聚集和(he)遷移中(zhong)微(wei)(wei)(wei)生(sheng)物(wu)都起著(zhu)極其重要的(de)(de)媒介作用。地下水(shui)化(hua)學性質的(de)(de)演(yan)(yan)變中(zhong)微(wei)(wei)(wei)生(sheng)物(wu)的(de)(de)控制和(he)改造(zao)是其主(zhu)要因素之一。

地(di)下(xia)(xia)水(shui)(shui)系統(tong)是(shi)一個(ge)復雜綜(zong)合體,包括了(le)地(di)下(xia)(xia)水(shui)(shui)流(liu)經的(de)介(jie)質,地(di)下(xia)(xia)水(shui)(shui)中各(ge)(ge)種物(wu)理(li)化學成分和(he)地(di)表的(de)天然通道等。加之人類對(dui)(dui)地(di)下(xia)(xia)水(shui)(shui)的(de)開(kai)發利用活(huo)動(dong)已經并(bing)將繼續改變(bian)(bian)地(di)下(xia)(xia)水(shui)(shui)環境,如地(di)下(xia)(xia)水(shui)(shui)的(de)污染、過量的(de)開(kai)采以及其它(ta)流(liu)體礦產的(de)開(kai)發等都對(dui)(dui)地(di)下(xia)(xia)水(shui)(shui)系統(tong)的(de)天然環境產生(sheng)影(ying)響。環境因素的(de)變(bian)(bian)化相應地(di)也影(ying)響了(le)地(di)下(xia)(xia)水(shui)(shui)中生(sheng)物(wu)的(de)生(sheng)存條件,導致微(wei)生(sheng)物(wu)的(de)形態、生(sheng)理(li)、遺傳(chuan)特性的(de)改變(bian)(bian),促使各(ge)(ge)類微(wei)生(sheng)物(wu)不(bu)斷演替。地(di)下(xia)(xia)水(shui)(shui)系統(tong)中各(ge)(ge)種環境因素又是(shi)制約微(wei)生(sheng)物(wu)生(sheng)長、繁殖(zhi)的(de)重要(yao)因素。

地(di)下水(shui)微生(sheng)物學(xue)(xue)是(shi)地(di)下水(shui)科(ke)學(xue)(xue)與(yu)(yu)微生(sheng)物學(xue)(xue)緊密結(jie)合而形(xing)成(cheng)的(de)一門(men)新(xin)興(xing)學(xue)(xue)科(ke),它(ta)將地(di)下水(shui)視(shi)為一個有生(sheng)命(ming)的(de)系(xi)統加以研究(jiu),主要(yao)研究(jiu)與(yu)(yu)認知微生(sheng)物生(sheng)命(ming)過(guo)程與(yu)(yu)地(di)下水(shui)化(hua)學(xue)(xue)密切相關(guan)(guan)的(de)科(ke)學(xue)(xue)問題,是(shi)研究(jiu)微生(sheng)物活動與(yu)(yu)地(di)下水(shui)環(huan)境相互關(guan)(guan)系(xi)的(de)科(ke)學(xue)(xue),也(ye)就是(shi)探索(suo)微生(sheng)物直接參與(yu)(yu)地(di)下水(shui)化(hua)學(xue)(xue)形(xing)成(cheng)演化(hua)過(guo)程的(de)微生(sheng)物地(di)球化(hua)學(xue)(xue)作用,是(shi)地(di)下水(shui)科(ke)學(xue)(xue)研究(jiu)的(de)前(qian)沿領(ling)域。

2 微生物(wu)作用(yong)改變地下水化學(xue)組成(cheng)

早在1900年(nian)人(ren)們就發(fa)(fa)現(xian)未受(shou)污(wu)(wu)染時含有高濃度硫(liu)(liu)酸(suan)鹽的地下(xia)水(shui),受(shou)石(shi)油污(wu)(wu)染后卻常(chang)常(chang)缺(que)少溶解(jie)性硫(liu)(liu)酸(suan)鹽。1917年(nian)Rogers首次提出這是(shi)硫(liu)(liu)酸(suan)鹽還原(yuan)菌新陳代(dai)謝(xie)的作用所(suo)致。這個假(jia)設在從受(shou)石(shi)油污(wu)(wu)染的水(shui)中分離出硫(liu)(liu)酸(suan)鹽還原(yuan)菌時得到證實(shi)。在以后的幾(ji)十年(nian)里,很(hen)(hen)多學者對地下(xia)水(shui)化學組(zu)成(cheng)(cheng)的微生物影(ying)響(xiang)作用進行研(yan)究后認為,微生物對地下(xia)水(shui)化學組(zu)成(cheng)(cheng)具有重要影(ying)響(xiang)作用(Chapelle 2000)。如(ru),鐘佐燊(2001)研(yan)究認為,在石(shi)油烴污(wu)(wu)染的地下(xia)含水(shui)層中,如(ru)果發(fa)(fa)生了生物降解(jie)反應,則其水(shui)文地球化學標(biao)志(zhi)是(shi):水(shui)中溶解(jie)氧很(hen)(hen)微,NO-3和(he)SO2- 4明顯降低(di),Fe2+ 和(he)HCO-3升高,出現(xian)HS-或(huo)H2S 和(he)CH4。

地(di)下水(shui)系統(tong)中(zhong)電(dian)子供(gong)體(ti)與電(dian)子受(shou)體(ti)間的(de)(de)(de)(de)(de)豐度關系是(shi)影響微生物(wu)代謝(xie)速(su)度的(de)(de)(de)(de)(de)主(zhu)要因(yin)素。在未污染(ran)的(de)(de)(de)(de)(de)含水(shui)層(ceng)中(zhong),電(dian)子供(gong)體(ti)的(de)(de)(de)(de)(de)可(ke)(ke)(ke)用性(xing)限制(zhi)了微生物(wu)的(de)(de)(de)(de)(de)新陳(chen)代謝(xie),溶解(jie)性(xing)無(wu)機碳(tan)沿著含水(shui)層(ceng)流動(dong)(dong)路徑慢(man)慢(man)聚積,可(ke)(ke)(ke)用的(de)(de)(de)(de)(de)電(dian)子受(shou)體(ti)依照溶解(jie)氧>硝(xiao)酸鹽>三價鐵>硫(liu)酸鹽>二(er)氧化碳(tan)(甲烷生成)的(de)(de)(de)(de)(de)次(ci)序不斷被消耗。在人類活(huo)動(dong)(dong)污染(ran)的(de)(de)(de)(de)(de)含水(shui)層(ceng)中(zhong),常(chang)存在過剩的(de)(de)(de)(de)(de)可(ke)(ke)(ke)用有機碳(tan),電(dian)子受(shou)體(ti)的(de)(de)(de)(de)(de)可(ke)(ke)(ke)用性(xing)限制(zhi)微生物(wu)的(de)(de)(de)(de)(de)新陳(chen)代謝(xie)。

美(mei)國南卡(ka)羅(luo)萊納(na)州(zhou)Black Creek含(han)(han)(han)水(shui)(shui)(shui)層是(shi)(shi)區(qu)(qu)域地(di)(di)下(xia)水(shui)(shui)(shui)化學(xue)類型(xing)變化受電子供體限制的很好例子。McMahon等(McMahon 1991a1991b,Chapelle 1990)對(dui)該系(xi)統進(jin)行詳細(xi)研(yan)究(jiu)后,描(miao)述了(le)微(wei)(wei)(wei)生(sheng)(sheng)(sheng)物(wu)作用(yong)(yong)(yong)(yong)對(dui)含(han)(han)(han)水(shui)(shui)(shui)層地(di)(di)下(xia)水(shui)(shui)(shui)化學(xue)組成的影響。該水(shui)(shui)(shui)文地(di)(di)質單元,水(shui)(shui)(shui)流(liu)從(cong)補給(gei)區(qu)(qu)向(xiang)下(xia)游(you)150 km到(dao)排泄區(qu)(qu),溶(rong)(rong)解(jie)性無(wu)(wu)機(ji)碳(tan)濃度(du)從(cong)不(bu)到(dao)1 mM/L 增(zeng)加(jia)到(dao)超過(guo)12 mM/L。由微(wei)(wei)(wei)生(sheng)(sheng)(sheng)物(wu)代謝(xie)作用(yong)(yong)(yong)(yong)產生(sheng)(sheng)(sheng)的溶(rong)(rong)解(jie)性無(wu)(wu)機(ji)碳(tan)促進(jin)了(le)含(han)(han)(han)水(shui)(shui)(shui)層中(zhong)碳(tan)酸(suan)鹽的溶(rong)(rong)解(jie),根(gen)據公(gong)式(shi):CaCO3 (碳(tan)酸(suan)鹽)+CO2 (微(wei)(wei)(wei)生(sheng)(sheng)(sheng)物(wu))→Ca2+ +2HCO-3計算得出,大(da)約一半的溶(rong)(rong)解(jie)性無(wu)(wu)機(ji)碳(tan)來自微(wei)(wei)(wei)生(sheng)(sheng)(sheng)物(wu)代謝(xie)作用(yong)(yong)(yong)(yong)(約6 mM),有(you)研(yan)究(jiu)表明該地(di)(di)區(qu)(qu)地(di)(di)下(xia)水(shui)(shui)(shui)補給(gei)大(da)約需要用(yong)(yong)(yong)(yong)15萬(wan)a,由此推出,微(wei)(wei)(wei)生(sheng)(sheng)(sheng)物(wu)代謝(xie)作用(yong)(yong)(yong)(yong)產生(sheng)(sheng)(sheng)溶(rong)(rong)解(jie)性無(wu)(wu)機(ji)碳(tan)的速率約為10-4 mM/L•a。因(yin)此,盡(jin)管沿(yan)地(di)(di)下(xia)水(shui)(shui)(shui)流(liu)溶(rong)(rong)解(jie)性無(wu)(wu)機(ji)碳(tan)濃度(du)增(zeng)加(jia)很大(da),但微(wei)(wei)(wei)生(sheng)(sheng)(sheng)物(wu)代謝(xie)速度(du)很低(di)(Chapelle 1990)。其(qi)主要原因(yin)是(shi)(shi),含(han)(han)(han)水(shui)(shui)(shui)層中(zhong)可代謝(xie)的有(you)機(ji)碳(tan)含(han)(han)(han)量(liang)低(di)。McMahon(1992)研(yan)究(jiu)認為,Black Creek含(han)(han)(han)水(shui)(shui)(shui)層中(zhong)有(you)機(ji)碳(tan)含(han)(han)(han)量(liang)只占沉積物(wu)干重(zhong)的0.1±1.0%。由于(yu)低(di)速率的微(wei)(wei)(wei)生(sheng)(sheng)(sheng)物(wu)代謝(xie)作用(yong)(yong)(yong)(yong),系(xi)統中(zhong)可用(yong)(yong)(yong)(yong)電子受體的量(liang)(O2、Fe3+、硫酸(suan)鹽和CO2)相對(dui)有(you)機(ji)碳(tan)來說(shuo)是(shi)(shi)豐富的。

當地下水系統中可(ke)用(yong)有機碳(tan)的(de)含(han)(han)量很高時,可(ke)用(yong)電(dian)子(zi)受(shou)體(ti)缺乏會限(xian)制微生(sheng)物代(dai)謝作用(yong)。電(dian)子(zi)受(shou)體(ti)受(shou)限(xian)的(de)含(han)(han)水層包括泥炭(tan)含(han)(han)水層(普(pu)遍(bian)在北(bei)半(ban)球),石油儲(chu)存地,和由人類活動(dong)引起化(hua)學(xue)污(wu)染(ran)的(de)含(han)(han)水層。1979年(nian)美(mei)國明尼(ni)蘇達州管(guan)道爆(bao)裂泄漏大約10萬(wan)加侖(lun)的(de)原(yuan)(yuan)油到一(yi)個(ge)(ge)冰水沉(chen)積含(han)(han)水層。泄漏時,由于與(yu)大氣快速交(jiao)換,以及含(han)(han)水層天然有機碳(tan)含(han)(han)量低,地下水呈飽(bao)和溶解氧狀(zhuang)態(約10 mg/L)。隨著可(ke)代(dai)謝碳(tan)的(de)突(tu)然流入,油積聚(ju)在水面,氧被迅速消耗,并形成三價鐵還原(yuan)(yuan)條件。泄漏后5年(nian),在油透鏡體(ti)附(fu)近含(han)(han)水層中氫氧化(hua)鐵被耗盡,甲烷生(sheng)成成為一(yi)個(ge)(ge)重(zhong)要作用(yong)。這(zhe)個(ge)(ge)受(shou)原(yuan)(yuan)油泄漏污(wu)染(ran)的(de)淺層含(han)(han)水層是電(dian)子(zi)受(shou)體(ti)受(shou)限(xian)含(han)(han)水層最好例證之一(yi)(Baedecker 1993)。

由于原油(you)泄漏(lou)電子(zi)供體(ti)過剩(sheng),在最接(jie)近污(wu)染源的Bemidji含(han)水(shui)(shui)層(ceng),其(qi)水(shui)(shui)化學特(te)征(zheng)主(zhu)要(yao)為甲(jia)(jia)烷(wan)生成環境,其(qi)次為硫酸鹽還原,鐵還原,和低溶解氧(yang)(yang)環境。該含(han)水(shui)(shui)層(ceng)與Black Creek 含(han)水(shui)(shui)層(ceng)的情(qing)況完全相(xiang)反(fan),Black Creek 含(han)水(shui)(shui)層(ceng)甲(jia)(jia)烷(wan)生成的地(di)方遠離補給區。而Bemidji含(han)水(shui)(shui)層(ceng)的硫酸鹽相(xiang)對較少,硫酸鹽還原不是主(zhu)要(yao)的作(zuo)用(yong)。這(zhe)種氧(yang)(yang)化還原作(zuo)用(yong)的次序是電子(zi)受體(ti)受限的地(di)下(xia)水(shui)(shui)系統(tong)的特(te)征(zheng),常(chang)見于受石油(you)烴污(wu)染的地(di)下(xia)水(shui)(shui)系統(tong)。

3 微生物作用改變(bian)含水層水力性(xing)質

微生(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)作(zuo)用除影響地下水化學(xue)組(zu)分以外,也影響地下水系統(tong)的(de)(de)(de)物(wu)(wu)(wu)(wu)理性(xing)質(zhi)。地質(zhi)學(xue)家很早就知道在(zai)非(fei)孔(kong)(kong)隙(xi)(xi)巖中(zhong)(zhong),次(ci)生(sheng)(sheng)(sheng)孔(kong)(kong)隙(xi)(xi)能提高(gao)含(han)水層的(de)(de)(de)水力性(xing)質(zhi) ,還可以積聚石油。人(ren)們通過大量的(de)(de)(de)同位素和質(zhi)量平衡研究(jiu)得出,有(you)機物(wu)(wu)(wu)(wu)的(de)(de)(de)去碳酸(suan)基和其它無機作(zuo)用不能解(jie)釋許多系統(tong)中(zhong)(zhong)的(de)(de)(de)次(ci)生(sheng)(sheng)(sheng)孔(kong)(kong)隙(xi)(xi)現(xian)象(Lundergard 1986)。由于大多數含(han)水層系統(tong)中(zhong)(zhong)存(cun)(cun)在(zai)大量具有(you)活性(xing)的(de)(de)(de)不同微生(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)種群,微生(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)代謝作(zuo)用引(yin)起(qi)人(ren)們的(de)(de)(de)關注,大量研究(jiu)表明微生(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)作(zuo)用能引(yin)起(qi)硅酸(suan)鹽(yan)和碳酸(suan)鹽(yan)巖中(zhong)(zhong)次(ci)生(sheng)(sheng)(sheng)孔(kong)(kong)隙(xi)(xi)產生(sheng)(sheng)(sheng)(Bennett 1987,Chapelle 1988)。地下水中(zhong)(zhong)硫(liu)(liu)酸(suan)鹽(yan)在(zai)有(you)脫硫(liu)(liu)細菌參與(yu)和有(you)機質(zhi)存(cun)(cun)在(zai)的(de)(de)(de)條件下發生(sheng)(sheng)(sheng)還原反(fan)應而產生(sheng)(sheng)(sheng)H2S(Na2SO4+2H2O+2C→2NaHCO3+H2S),這個(ge)反(fan)應有(you)溶(rong)解(jie)硫(liu)(liu)酸(suan)鹽(yan)的(de)(de)(de)作(zuo)用,反(fan)應產生(sheng)(sheng)(sheng)的(de)(de)(de)H2S 溶(rong)于水中(zhong)(zhong)也具有(you)溶(rong)解(jie)碳酸(suan)鹽(yan)等礦物(wu)(wu)(wu)(wu)的(de)(de)(de)能力(李(li)義軍 2002)。

微生物(wu)作(zuo)用除顯(xian)著(zhu)改變了Black Creek 含(han)(han)水(shui)(shui)(shui)層(ceng)(ceng)(ceng)(ceng)水(shui)(shui)(shui)化學組(zu)分外,也改變了這(zhe)個含(han)(han)水(shui)(shui)(shui)層(ceng)(ceng)(ceng)(ceng)的(de)(de)水(shui)(shui)(shui)力(li)性(xing)(xing)質(zhi)。沿水(shui)(shui)(shui)流(liu)路徑的(de)(de)巖心資(zi)料(liao)顯(xian)示了一個顯(xian)著(zhu)的(de)(de)巖性(xing)(xing)變化。在(zai)補給(gei)區,不(bu)存在(zai)次(ci)(ci)生晶(jing)粒(li)間(jian)(jian)(jian)的(de)(de)方(fang)(fang)(fang)解石(shi)膠(jiao)結物(wu)。在(zai)補給(gei)區和(he)(he)排泄(xie)區的(de)(de)中(zhong)(zhong)間(jian)(jian)(jian)區域,南(nan)卡羅萊納(na)州(zhou)(zhou)萊克市常見方(fang)(fang)(fang)解石(shi)膠(jiao)結物(wu)。在(zai)排泄(xie)區附近,南(nan)卡羅萊納(na)州(zhou)(zhou)萊克市Myrtle 海(hai)灘,50%的(de)(de)厚層(ceng)(ceng)(ceng)(ceng)含(han)(han)水(shui)(shui)(shui)層(ceng)(ceng)(ceng)(ceng)被晶(jing)粒(li)間(jian)(jian)(jian)的(de)(de)方(fang)(fang)(fang)解石(shi)膠(jiao)結。McMahon等研(yan)究(jiu)了微生物(wu)作(zuo)用引(yin)起Black Creek含(han)(han)水(shui)(shui)(shui)層(ceng)(ceng)(ceng)(ceng)孔(kong)(kong)(kong)隙(xi)的(de)(de)填(tian)(tian)充現(xian)象。該(gai)研(yan)究(jiu)表明,Black Creek含(han)(han)水(shui)(shui)(shui)層(ceng)(ceng)(ceng)(ceng)的(de)(de)砂中(zhong)(zhong)含(han)(han)有(you)機碳(tan)(tan)少(shao),而(er)(er)相(xiang)鄰(lin)的(de)(de)狹窄的(de)(de)層(ceng)(ceng)(ceng)(ceng)中(zhong)(zhong)含(han)(han)有(you)豐富(fu)的(de)(de)有(you)機碳(tan)(tan)。隔水(shui)(shui)(shui)層(ceng)(ceng)(ceng)(ceng)有(you)機碳(tan)(tan)的(de)(de)發酵使有(you)機酸(suan)在(zai)隔水(shui)(shui)(shui)層(ceng)(ceng)(ceng)(ceng)孔(kong)(kong)(kong)隙(xi)水(shui)(shui)(shui)中(zhong)(zhong)積聚(ju)(ju)。有(you)機酸(suan)擴(kuo)散到(dao)Black Creek含(han)(han)水(shui)(shui)(shui)層(ceng)(ceng)(ceng)(ceng),進而(er)(er)氧(yang)化為二氧(yang)化碳(tan)(tan),引(yin)起大(da)量的(de)(de)碳(tan)(tan)從隔水(shui)(shui)(shui)層(ceng)(ceng)(ceng)(ceng)遷移(yi)到(dao)含(han)(han)水(shui)(shui)(shui)層(ceng)(ceng)(ceng)(ceng)。二氧(yang)化碳(tan)(tan)同含(han)(han)水(shui)(shui)(shui)層(ceng)(ceng)(ceng)(ceng)物(wu)質(zhi)反應產生碳(tan)(tan)酸(suan)鹽(yan)和(he)(he)重碳(tan)(tan)酸(suan)鹽(yan)。這(zhe)個作(zuo)用導(dao)致部分含(han)(han)水(shui)(shui)(shui)層(ceng)(ceng)(ceng)(ceng)次(ci)(ci)生孔(kong)(kong)(kong)隙(xi)產生。然而(er)(er),當碳(tan)(tan)酸(suan)鹽(yan)和(he)(he)重碳(tan)(tan)酸(suan)鹽(yan)在(zai)溶液中(zhong)(zhong)積聚(ju)(ju)、運移(yi),地下(xia)水(shui)(shui)(shui)的(de)(de)方(fang)(fang)(fang)解石(shi)變得過飽和(he)(he)時(shi),就會在(zai)含(han)(han)水(shui)(shui)(shui)層(ceng)(ceng)(ceng)(ceng)的(de)(de)其它部位沉(chen)淀下(xia)來。由于豐富(fu)的(de)(de)晶(jing)粒(li)間(jian)(jian)(jian)的(de)(de)方(fang)(fang)(fang)解石(shi)膠(jiao)結物(wu)填(tian)(tian)充了含(han)(han)水(shui)(shui)(shui)層(ceng)(ceng)(ceng)(ceng)系統的(de)(de)主要孔(kong)(kong)(kong)隙(xi),Black Creek含(han)(han)水(shui)(shui)(shui)層(ceng)(ceng)(ceng)(ceng)孔(kong)(kong)(kong)隙(xi)性(xing)(xing)減少(shao),透水(shui)(shui)(shui)性(xing)(xing)降低,以至不(bu)能滿足當地用水(shui)(shui)(shui)需求(qiu)。

有實驗(yan)表明(ming),二氧(yang)化(hua)碳和有機酸(suan)(suan)的(de)產(chan)物(wu)能(neng)增(zeng)加礦物(wu)的(de)溶解,引起次(ci)生(sheng)(sheng)孔(kong)隙性(xing)和滲(shen)透性(xing)的(de)發展。而(er)碳酸(suan)(suan)鹽、鐵和硫(liu)酸(suan)(suan)鹽微(wei)(wei)生(sheng)(sheng)物(wu)產(chan)物(wu)能(neng)引起方解石或(huo)黃鐵礦的(de)沉(chen)淀(dian),降低地(di)下(xia)水(shui)系統(tong)的(de)原生(sheng)(sheng)孔(kong)隙性(xing)和滲(shen)透性(xing)。也就是說,微(wei)(wei)生(sheng)(sheng)物(wu)既能(neng)破壞(Lundergard 1986)也能(neng)提(ti)高(Hiebert 199 McMahon 1995)含水(shui)層沉(chen)積物(wu)孔(kong)隙性(xing)。

4 污染(ran)修復中的微生物作用

現(xian)代社會產(chan)生(sheng)(sheng)了(le)大量(liang)的(de)化(hua)學產(chan)品,許多有毒有害的(de)物質被人(ren)類有意(yi)或無(wu)意(yi)地(di)(di)投放到(dao)地(di)(di)下(xia)水系統中,地(di)(di)下(xia)水受到(dao)嚴重污(wu)染(ran)(ran)(ran),地(di)(di)下(xia)水質量(liang)日益惡化(hua)。近(jin)年來,生(sheng)(sheng)物降(jiang)解技(ji)術(shu)以(yi)其可(ke)在污(wu)染(ran)(ran)(ran)現(xian)場進(jin)(jin)行(xing)修(xiu)復、可(ke)在難以(yi)處(chu)理(li)的(de)地(di)(di)方進(jin)(jin)行(xing)修(xiu)復、在生(sheng)(sheng)物修(xiu)復時不影響場地(di)(di)內正常生(sheng)(sheng)產(chan)、對(dui)污(wu)染(ran)(ran)(ran)地(di)(di)的(de)干擾或破壞小(xiao)、處(chu)理(li)后的(de)產(chan)物無(wu)二次污(wu)染(ran)(ran)(ran)、降(jiang)解過程(cheng)快、費用低等諸多優點受到(dao)世界各國環(huan)境科學界的(de)廣泛關(guan)注,激發了(le)人(ren)們(men)對(dui)污(wu)染(ran)(ran)(ran)修(xiu)復中微生(sheng)(sheng)物作用的(de)研究興趣。

對污(wu)(wu)染(ran)地(di)(di)下水(shui)進(jin)行(xing)原位生(sheng)(sheng)物(wu)(wu)(wu)(wu)修復時,好(hao)(hao)氧(yang)(yang)(yang)(yang)(yang)(yang)(yang)(yang)微生(sheng)(sheng)物(wu)(wu)(wu)(wu)通過將(jiang)(jiang)(jiang)有(you)(you)機(ji)化(hua)(hua)(hua)(hua)合物(wu)(wu)(wu)(wu)氧(yang)(yang)(yang)(yang)(yang)(yang)(yang)(yang)化(hua)(hua)(hua)(hua)成(cheng)二氧(yang)(yang)(yang)(yang)(yang)(yang)(yang)(yang)化(hua)(hua)(hua)(hua)碳而(er)(er)獲取能(neng)(neng)量,其(qi)中氧(yang)(yang)(yang)(yang)(yang)(yang)(yang)(yang)為電(dian)子受體(ti),當(dang)地(di)(di)下存在氧(yang)(yang)(yang)(yang)(yang)(yang)(yang)(yang)時,好(hao)(hao)氧(yang)(yang)(yang)(yang)(yang)(yang)(yang)(yang)微生(sheng)(sheng)物(wu)(wu)(wu)(wu)可將(jiang)(jiang)(jiang)有(you)(you)機(ji)污(wu)(wu)染(ran)物(wu)(wu)(wu)(wu)氧(yang)(yang)(yang)(yang)(yang)(yang)(yang)(yang)化(hua)(hua)(hua)(hua)成(cheng)二氧(yang)(yang)(yang)(yang)(yang)(yang)(yang)(yang)化(hua)(hua)(hua)(hua)碳,從而(er)(er)使(shi)污(wu)(wu)染(ran)地(di)(di)下水(shui)凈化(hua)(hua)(hua)(hua)。厭(yan)氧(yang)(yang)(yang)(yang)(yang)(yang)(yang)(yang)微生(sheng)(sheng)物(wu)(wu)(wu)(wu)也能(neng)(neng)將(jiang)(jiang)(jiang)有(you)(you)機(ji)化(hua)(hua)(hua)(hua)合物(wu)(wu)(wu)(wu)氧(yang)(yang)(yang)(yang)(yang)(yang)(yang)(yang)化(hua)(hua)(hua)(hua)成(cheng)二氧(yang)(yang)(yang)(yang)(yang)(yang)(yang)(yang)化(hua)(hua)(hua)(hua)碳,但其(qi)作用過程(cheng)中的電(dian)子受體(ti)不是(shi)(shi)氧(yang)(yang)(yang)(yang)(yang)(yang)(yang)(yang),而(er)(er)是(shi)(shi)以硝(xiao)酸鹽(yan)、硫酸鹽(yan)或Fe3+等(deng)氧(yang)(yang)(yang)(yang)(yang)(yang)(yang)(yang)化(hua)(hua)(hua)(hua)物(wu)(wu)(wu)(wu)作為電(dian)子受體(ti)。由于許多受污(wu)(wu)染(ran)的地(di)(di)下水(shui)環境中缺(que)乏(fa)氧(yang)(yang)(yang)(yang)(yang)(yang)(yang)(yang),好(hao)(hao)氧(yang)(yang)(yang)(yang)(yang)(yang)(yang)(yang)微生(sheng)(sheng)物(wu)(wu)(wu)(wu)在代(dai)謝過程(cheng)中很快(kuai)將(jiang)(jiang)(jiang)氧(yang)(yang)(yang)(yang)(yang)(yang)(yang)(yang)耗盡(jin),此時,好(hao)(hao)氧(yang)(yang)(yang)(yang)(yang)(yang)(yang)(yang)微生(sheng)(sheng)物(wu)(wu)(wu)(wu)將(jiang)(jiang)(jiang)無法對污(wu)(wu)染(ran)物(wu)(wu)(wu)(wu)進(jin)一(yi)步降解(jie)。厭(yan)氧(yang)(yang)(yang)(yang)(yang)(yang)(yang)(yang)微生(sheng)(sheng)物(wu)(wu)(wu)(wu)不同的代(dai)謝能(neng)(neng)力(li),在污(wu)(wu)染(ran)地(di)(di)下水(shui)修復方面顯(xian)示(shi)了巨大的潛力(li)。最新研(yan)究表(biao)明(ming),厭(yan)氧(yang)(yang)(yang)(yang)(yang)(yang)(yang)(yang)微生(sheng)(sheng)物(wu)(wu)(wu)(wu)可有(you)(you)效降解(jie)地(di)(di)下水(shui)中烴類、氯化(hua)(hua)(hua)(hua)溶(rong)劑(ji)、硝(xiao)酸鹽(yan)以及鈾(you)、鉻、锝(de)、鈷、硒有(you)(you)毒金屬(shu)和準金屬(shu)等(deng)污(wu)(wu)染(ran)物(wu)(wu)(wu)(wu)。

在1973年,人們首(shou)次發現了淺(qian)層地(di)(di)下(xia)水中的(de)(de)土著(zhu)微生物對石油的(de)(de)降(jiang)(jiang)解(jie)(jie)能力(li),不久,生物降(jiang)(jiang)解(jie)(jie)被用(yong)(yong)于提高汽油污染的(de)(de)含水層的(de)(de)凈化。自那以(yi)后(hou),人們開(kai)始使用(yong)(yong)生物降(jiang)(jiang)解(jie)(jie)地(di)(di)下(xia)水系統(tong)中各種(zhong)常見化學污染物,包(bao)括氯代(dai)化溶劑。

地(di)下(xia)水(shui)(shui)中石(shi)油(you)烴(jing)的污(wu)染(ran)(ran)(ran)主要(yao)來自汽油(you)及(ji)其它石(shi)油(you)產品的地(di)下(xia)儲(chu)罐的滲漏。其主要(yao)污(wu)染(ran)(ran)(ran)組(zu)分(fen)為(wei)苯(ben)(ben)、甲(jia)苯(ben)(ben)、乙苯(ben)(ben)和二甲(jia)苯(ben)(ben)。生物(wu)降(jiang)解(jie)石(shi)油(you)烴(jing)的實質是在(zai)微生物(wu)參于(yu)(yu)(yu)下(xia)的氧(yang)化還原(yuan)反應(ying)(ying)。該(gai)反應(ying)(ying)中電子(zi)供體(ti)烴(jing)給(gei)出電子(zi),好(hao)氧(yang)菌僅利用(yong)氧(yang)作(zuo)為(wei)電子(zi)受體(ti),而(er)厭氧(yang)菌則(ze)可利用(yong)NO-3、Fe3+、SO2-4和CO2 作(zuo)為(wei)電子(zi)受體(ti)。美(mei)國(guo)密執(zhi)按(an)州(zhou)使用(yong)原(yuan)位生物(wu)修復技術,成(cheng)功修復了(le)由于(yu)(yu)(yu)地(di)下(xia)儲(chu)油(you)罐漏油(you)受到(dao)嚴重(zhong)污(wu)染(ran)(ran)(ran)的包氣帶(dai)及(ji)含(han)水(shui)(shui)層。其方(fang)法是:在(zai)污(wu)染(ran)(ran)(ran)區,首先(xian)注(zhu)入(ru)未污(wu)染(ran)(ran)(ran)地(di)下(xia)水(shui)(shui)42 d,第43 d開(kai)始(shi)注(zhu)入(ru)含(han)NO-3的地(di)下(xia)水(shui)(shui),到(dao)第112 d基本清除了(le)污(wu)染(ran)(ran)(ran)物(wu)。結果表明: 地(di)下(xia)水(shui)(shui)中,苯(ben)(ben)從(cong)0.76 mg/L降(jiang)至(zhi)小(xiao)于(yu)(yu)(yu)0.001 mg/L ,甲(jia)苯(ben)(ben)從(cong)4.5 mg/L 降(jiang)至(zhi)小(xiao)于(yu)(yu)(yu)0.001 mg/L;包氣帶(dai)土壤(rang)中,苯(ben)(ben)從(cong)0.84 mg/kg降(jiang)至(zhi)0.017 mg/kg ,甲(jia)苯(ben)(ben)從(cong)33 mg/kg 降(jiang)至(zhi)0.103 6 mg/kg(鐘佐燊 2001)。

多環(huan)(huan)(huan)芳(fang)(fang)烴具有毒(du)性,對(dui)(dui)人(ren)類健康造成(cheng)的(de)(de)危(wei)害大(da),尤其是(shi)高分(fen)子多環(huan)(huan)(huan)芳(fang)(fang)烴的(de)(de)致突(tu)變與致癌特性。多環(huan)(huan)(huan)芳(fang)(fang)烴生物(wu)(wu)降解(jie)研(yan)究日益(yi)受到了人(ren)們的(de)(de)重視。近年來人(ren)們對(dui)(dui)微(wei)(wei)生物(wu)(wu)降解(jie)多環(huan)(huan)(huan)芳(fang)(fang)烴的(de)(de)作用、機理進(jin)行了廣(guang)泛的(de)(de)研(yan)究,研(yan)究結果表明,對(dui)(dui)可降解(jie)多環(huan)(huan)(huan)芳(fang)(fang)烴的(de)(de)微(wei)(wei)生物(wu)(wu)有紅(hong)球菌屬(shu)(shu)( Rhodococ2cus) 、假單胞(bao)菌屬(shu)(shu)( Pseudomonas ) 、分(fen)枝(zhi)桿(gan)菌( My2cobacterium) 、芽孢(bao)桿(gan)菌屬(shu)(shu)( Bacill us ) 、黃桿(gan)菌屬(shu)(shu)( Flavobacterium) 、氣單胞(bao)菌屬(shu)(shu)( Aeromonas ) 、拜葉林克氏菌屬(shu)(shu)( Beijernckia ) 、棒狀桿(gan)菌屬(shu)(shu)( Corynebacterium) 、藍細菌( Cyanobacteria) 、微(wei)(wei)球菌屬(shu)(shu)( Micrococcus ) 、諾卡氏菌屬(shu)(shu)( Nocardia) 和弧(hu)菌屬(shu)(shu)( V Ibrio)等(溫(wen)洪(hong)宇 2005)。利用微(wei)(wei)生物(wu)(wu)去除地下水中的(de)(de)多環(huan)(huan)(huan)芳(fang)(fang)烴不會(hui)造成(cheng)二(er)次污染,費用低,易操作,是(shi)去除多環(huan)(huan)(huan)芳(fang)(fang)烴的(de)(de)最佳方法。

飲(yin)用(yong)(yong)水(shui)(shui)中(zhong)(zhong)過量(liang)的(de)(de)(de)(de)硝(xiao)(xiao)(xiao)酸鹽(yan)能夠引起嬰(ying)幼(you)狼(lang)高鐵血(xue)紅(hong)蛋白血(xue)癥(zheng),我國許(xu)多地(di)(di)(di)區淺層地(di)(di)(di)下(xia)(xia)水(shui)(shui)已(yi)普遍(bian)受(shou)到硝(xiao)(xiao)(xiao)酸鹽(yan)不同程度的(de)(de)(de)(de)污(wu)染(ran)。張勝(2005)對(dui)地(di)(di)(di)下(xia)(xia)水(shui)(shui)硝(xiao)(xiao)(xiao)酸鹽(yan)污(wu)染(ran)的(de)(de)(de)(de)微生(sheng)物(wu)修(xiu)復技(ji)術進行(xing)了研(yan)究(jiu)(jiu)。通過兩年多的(de)(de)(de)(de)室(shi)內和(he)野(ye)外(wai)原(yuan)位(wei)(wei)的(de)(de)(de)(de)大(da)量(liang)試驗(yan)研(yan)究(jiu)(jiu),優選出(chu)(chu)反硝(xiao)(xiao)(xiao)化菌液和(he)增(zeng)強(qiang)地(di)(di)(di)下(xia)(xia)水(shui)(shui)中(zhong)(zhong)微生(sheng)物(wu)反硝(xiao)(xiao)(xiao)化作(zuo)用(yong)(yong)的(de)(de)(de)(de)營養碳源(yuan)乙(yi)醇、乙(yi)酸鈉(na)(na),利(li)用(yong)(yong)乙(yi)酸鈉(na)(na)作(zuo)為營養碳源(yuan)在野(ye)外(wai)試驗(yan)井進行(xing)原(yuan)位(wei)(wei)微生(sheng)物(wu)脫氮試驗(yan),對(dui)地(di)(di)(di)下(xia)(xia)水(shui)(shui)中(zhong)(zhong)NO-3的(de)(de)(de)(de)去除(chu)率可達98%。研(yan)究(jiu)(jiu)結果得(de)出(chu)(chu),利(li)用(yong)(yong)優選反硝(xiao)(xiao)(xiao)化菌液和(he)乙(yi)酸鈉(na)(na)營養碳源(yuan)對(dui)地(di)(di)(di)下(xia)(xia)水(shui)(shui)硝(xiao)(xiao)(xiao)酸鹽(yan)污(wu)染(ran)修(xiu)復效果好,在大(da)面積土(tu)體和(he)地(di)(di)(di)下(xia)(xia)水(shui)(shui)污(wu)染(ran)原(yuan)位(wei)(wei)修(xiu)復技(ji)術實(shi)施是可行(xing)的(de)(de)(de)(de)、有(you)效的(de)(de)(de)(de),它不僅可以在原(yuan)位(wei)(wei)有(you)效地(di)(di)(di)修(xiu)復土(tu)壤、包(bao)氣帶的(de)(de)(de)(de)硝(xiao)(xiao)(xiao)態氮污(wu)染(ran),而且還可以增(zeng)加(jia)土(tu)壤的(de)(de)(de)(de)肥力(li)及氮肥的(de)(de)(de)(de)利(li)用(yong)(yong)率,無負面作(zuo)用(yong)(yong),對(dui)修(xiu)復污(wu)染(ran)、保(bao)護(hu)地(di)(di)(di)下(xia)(xia)水(shui)(shui)資源(yuan)和(he)農作(zuo)物(wu)增(zeng)產(chan)都具有(you)重要意義。

5 影響微生物(wu)作用的地下水(shui)環境因素

微(wei)生(sheng)物(wu)作(zuo)用對地(di)下水系統的影響程度(du)主要受微(wei)生(sheng)物(wu)代謝(xie)速度(du),水文地(di)質條件,含水層的巖性等多種(zhong)因素的控制。

張宗祜,任(ren)福弘(hong)等(2006)為研究氮素的生(sheng)物化(hua)(hua)學(xue)循(xun)環問題(ti),通過對河北正定(ding)野外試(shi)驗場(chang)貫穿包(bao)(bao)氣(qi)帶的18.5 m的鉆孔剖面土樣的水理性質(zhi)(zhi)、地(di)球化(hua)(hua)學(xue)成分、有機質(zhi)(zhi)含(han)量的測試(shi)和微(wei)生(sheng)物的培養(yang)鑒(jian)定(ding),發現包(bao)(bao)氣(qi)帶土體(ti)的各類細菌(jun)在整個(ge)包(bao)(bao)氣(qi)帶均有分布(bu)(bu),但(dan)隨著巖性、物理化(hua)(hua)學(xue)條件(jian)(jian)的變(bian)化(hua)(hua),而(er)顯現出不同的細菌(jun)含(han)量,特別是(shi)(shi)(shi)在幾個(ge)層(ceng)次上出現細菌(jun)含(han)量高的活化(hua)(hua)層(ceng)。它的出現充分說明了細菌(jun)在包(bao)(bao)氣(qi)帶中分布(bu)(bu),不是(shi)(shi)(shi)受深度變(bian)化(hua)(hua)所(suo)(suo)控制(zhi),而(er)是(shi)(shi)(shi)受其(qi)環境(jing)條件(jian)(jian)所(suo)(suo)制(zhi)約(yue),如含(han)水量、營養(yang)元(yuan)素、土體(ti)巖性等。這一研究成果為今后深入(ru)研究地(di)下水系統中微(wei)生(sheng)物的作用奠定(ding)了良(liang)好的基礎。

McMahon(2001)研究了含水(shui)(shui)層(ceng)(ceng)和(he)(he)弱透(tou)水(shui)(shui)層(ceng)(ceng)交(jiao)界(jie)面上的幾個重要生物地(di)(di)球(qiu)化(hua)(hua)學反應(ying)(ying),包(bao)括氧還(huan)原、反硝化(hua)(hua)作(zuo)用和(he)(he)Fe3+、SO 2-4和(he)(he) CO2還(huan)原(甲(jia)烷生成)。研究表明(ming),一(yi)(yi)些地(di)(di)方(fang),生物地(di)(di)球(qiu)化(hua)(hua)學反應(ying)(ying)發(fa)生在交(jiao)界(jie)面的弱透(tou)水(shui)(shui)層(ceng)(ceng)面,電子(zi)(zi)受體(ti)(ti)(ti)從含水(shui)(shui)層(ceng)(ceng)運(yun)移到(dao)電子(zi)(zi)供(gong)(gong)體(ti)(ti)(ti)豐(feng)富的弱透(tou)水(shui)(shui)層(ceng)(ceng)里。另一(yi)(yi)些地(di)(di)方(fang),生物地(di)(di)球(qiu)化(hua)(hua)學反應(ying)(ying)發(fa)生在交(jiao)界(jie)面的含水(shui)(shui)層(ceng)(ceng)一(yi)(yi)方(fang),電子(zi)(zi)供(gong)(gong)體(ti)(ti)(ti)(有(you)時是電子(zi)(zi)受體(ti)(ti)(ti))從弱透(tou)水(shui)(shui)層(ceng)(ceng)運(yun)移到(dao)電子(zi)(zi)受體(ti)(ti)(ti)或(huo)微生物豐(feng)富的含水(shui)(shui)層(ceng)(ceng)里。影響含水(shui)(shui)層(ceng)(ceng)/弱透(tou)水(shui)(shui)交(jiao)界(jie)面發(fa)生生物地(di)(di)球(qiu)化(hua)(hua)學反應(ying)(ying)范(fan)圍的因素有(you),交(jiao)界(jie)面兩(liang)邊電子(zi)(zi)受體(ti)(ti)(ti)和(he)(he)電子(zi)(zi)供(gong)(gong)體(ti)(ti)(ti)的豐(feng)度和(he)(he)可(ke)溶性,電子(zi)(zi)受體(ti)(ti)(ti)和(he)(he)電子(zi)(zi)供(gong)(gong)體(ti)(ti)(ti)反應(ying)(ying)和(he)(he)越過(guo)界(jie)面的速度。

6 展 望

地(di)下(xia)水(shui)沉積(ji)物(wu)(wu)(wu)無(wu)菌(jun)取樣方(fang)法(fa)的(de)(de)(de)發展完善(shan)和(he)微生(sheng)(sheng)物(wu)(wu)(wu)綜合評(ping)價方(fang)法(fa)的(de)(de)(de)建立,使(shi)微生(sheng)(sheng)物(wu)(wu)(wu)代謝作用(yong)(yong)對(dui)地(di)下(xia)水(shui)地(di)球化學的(de)(de)(de)影響被(bei)廣泛認(ren)識。隨著當今社會科學技(ji)(ji)術的(de)(de)(de)不(bu)斷進(jin)(jin)步(bu),地(di)下(xia)水(shui)微生(sheng)(sheng)物(wu)(wu)(wu)地(di)球化學的(de)(de)(de)研(yan)究(jiu)(jiu)技(ji)(ji)術也日益得(de)到提高和(he)改進(jin)(jin)。首先,人們(men)可以(yi)利用(yong)(yong)電(dian)子(zi)顯微鏡、能普、電(dian)子(zi)探(tan)針(zhen)、離子(zi)探(tan)針(zhen)、質子(zi)探(tan)針(zhen)來觀察和(he)分(fen)析(xi)細胞(bao)內(nei)部(bu)的(de)(de)(de)結構(gou)、成(cheng)分(fen)。第二(er),微生(sheng)(sheng)物(wu)(wu)(wu)生(sheng)(sheng)態學研(yan)究(jiu)(jiu)的(de)(de)(de)新技(ji)(ji)術被(bei)用(yong)(yong)于(yu)地(di)下(xia)水(shui)微生(sheng)(sheng)物(wu)(wu)(wu)研(yan)究(jiu)(jiu)中(zhong)(zhong)。如,人們(men)在研(yan)究(jiu)(jiu)污染(ran)(ran)或未(wei)污染(ran)(ran)含水(shui)層生(sheng)(sheng)物(wu)(wu)(wu)群(qun)落(luo)(luo)組成(cheng)研(yan)究(jiu)(jiu)中(zhong)(zhong)開始使(shi)用(yong)(yong)磷(lin)脂脂肪酸分(fen)析(xi)方(fang)法(fa)(PLFA),該(gai)方(fang)法(fa)是(shi)基(ji)于(yu)生(sheng)(sheng)物(wu)(wu)(wu)化學手段(duan)的(de)(de)(de)一(yi)種微生(sheng)(sheng)物(wu)(wu)(wu)生(sheng)(sheng)態學研(yan)究(jiu)(jiu)新技(ji)(ji)術,它(ta)(ta)具有對(dui)細胞(bao)生(sheng)(sheng)理活性(xing)沒有特殊的(de)(de)(de)要求,對(dui)樣品保存時間要求不(bu)高、不(bu)需要進(jin)(jin)行微生(sheng)(sheng)物(wu)(wu)(wu)培養等(deng)(deng)優(you)點(dian)。它(ta)(ta)能提供(gong)微生(sheng)(sheng)物(wu)(wu)(wu)群(qun)落(luo)(luo)生(sheng)(sheng)物(wu)(wu)(wu)量及(ji)其時、空變化、群(qun)落(luo)(luo)結構(gou)和(he)功能等(deng)(deng)多種微生(sheng)(sheng)物(wu)(wu)(wu)信(xin)息(xi),是(shi)一(yi)種快捷、可靠的(de)(de)(de)分(fen)析(xi)方(fang)法(fa)。.再如,人們(men)通過基(ji)因(yin)工程(cheng),在DNA的(de)(de)(de)分(fen)子(zi)水(shui)平上(shang)動(dong)手術,使(shi)某(mou)種細胞(bao)結構(gou)的(de)(de)(de)基(ji)因(yin)轉到另一(yi)種細胞(bao)中(zhong)(zhong)去,而使(shi)之具有新的(de)(de)(de)遺傳性(xing)狀。

隨(sui)著我國環(huan)(huan)境(jing)科(ke)學(xue)(xue)(xue)界對地(di)(di)(di)(di)下(xia)水微(wei)(wei)(wei)生(sheng)(sheng)(sheng)物(wu)作用研(yan)究(jiu)的(de)(de)(de)(de)日益(yi)關注(zhu),我國地(di)(di)(di)(di)下(xia)水微(wei)(wei)(wei)生(sheng)(sheng)(sheng)物(wu)地(di)(di)(di)(di)球化學(xue)(xue)(xue)、微(wei)(wei)(wei)生(sheng)(sheng)(sheng)物(wu)工(gong)程學(xue)(xue)(xue)、微(wei)(wei)(wei)生(sheng)(sheng)(sheng)物(wu)環(huan)(huan)境(jing)工(gong)程學(xue)(xue)(xue)將(jiang)會作為重點發(fa)展(zhan)學(xue)(xue)(xue)科(ke)被(bei)大力扶持,地(di)(di)(di)(di)下(xia)水微(wei)(wei)(wei)生(sheng)(sheng)(sheng)物(wu)的(de)(de)(de)(de)基(ji)礎研(yan)究(jiu)應(ying)得到(dao)優(you)先發(fa)展(zhan),尤(you)其(qi)是在地(di)(di)(di)(di)下(xia)水環(huan)(huan)境(jing)中(zhong)微(wei)(wei)(wei)生(sheng)(sheng)(sheng)物(wu)的(de)(de)(de)(de)種(zhong)類、形態(tai)、分(fen)布特征、營養和生(sheng)(sheng)(sheng)長的(de)(de)(de)(de)一(yi)般規律,微(wei)(wei)(wei)生(sheng)(sheng)(sheng)物(wu)的(de)(de)(de)(de)代謝、演(yan)替(ti)和調控(kong),微(wei)(wei)(wei)生(sheng)(sheng)(sheng)物(wu)的(de)(de)(de)(de)基(ji)因及其(qi)所攜帶的(de)(de)(de)(de)遺傳信息表(biao)達等研(yan)究(jiu)方(fang)面,從基(ji)礎研(yan)究(jiu)中(zhong)尋找提(ti)高地(di)(di)(di)(di)質微(wei)(wei)(wei)生(sheng)(sheng)(sheng)物(wu)地(di)(di)(di)(di)球化學(xue)(xue)(xue)作用的(de)(de)(de)(de)研(yan)究(jiu)途徑和方(fang)法(fa)(fa)。地(di)(di)(di)(di)下(xia)水微(wei)(wei)(wei)生(sheng)(sheng)(sheng)物(wu)研(yan)究(jiu)將(jiang)進一(yi)步與地(di)(di)(di)(di)質學(xue)(xue)(xue)、微(wei)(wei)(wei)生(sheng)(sheng)(sheng)物(wu)學(xue)(xue)(xue)、環(huan)(huan)境(jing)生(sheng)(sheng)(sheng)態(tai)學(xue)(xue)(xue)、環(huan)(huan)境(jing)微(wei)(wei)(wei)生(sheng)(sheng)(sheng)態(tai)學(xue)(xue)(xue)、環(huan)(huan)境(jing)地(di)(di)(di)(di)質學(xue)(xue)(xue)、水文地(di)(di)(di)(di)質學(xue)(xue)(xue)、生(sheng)(sheng)(sheng)物(wu)化學(xue)(xue)(xue)等基(ji)礎科(ke)學(xue)(xue)(xue)的(de)(de)(de)(de)研(yan)究(jiu)交叉與合(he)作,對基(ji)礎科(ke)學(xue)(xue)(xue)的(de)(de)(de)(de)發(fa)展(zhan)提(ti)供動力和應(ying)用的(de)(de)(de)(de)驗證方(fang)法(fa)(fa)。

參考文獻:

[1] 李義軍.淺述次生孔隙的成因[J].西北地質,200 35 (1):65-69.
[2] 溫洪宇,廖銀章,李旭東.微生物降解多環芳烴的研究進展[J].微生物學雜志,2005,25 (6):73-75.
[3] 張 勝,張翠云,等,地質微生物地球化學作用的意義與展望[J].地質通報,2005,24(10~11):1027-1031. [4] 張宗祜,張光輝,任福弘,等.區域地下水演化過程及其與相鄰層圈的相互作用[M].北京,地質出版社,2006.
[5] 鐘佐燊.地下水有機污染控制及就地恢復技術研究進展二[J].水文地質工程地質,200 (4):26-31.
[6] Bennett P C,Siegel D I.Increased solubility of quartz in water due to complexation by dissolved organic compounds[J].Nature,1987,326:684-687.
[7] Baedecker M J,Cozzarelli I M,Siegel D I,Crude oil in a shallow sand and gravel aquifer: 3.Biogeochemical reactions and mass balance modeling in anoxic groundwater[J].Appl Geochem,199 8:569-586.
[8] Chapelle F H,Morris J T,McMahon P B.Bacterial metabolism and the del-13 _C composition of ground water,Floridan aquifer,South Carolina[J].Geology,1988,16:117-121.
[9] Chapelle F H,Lovley D R.Rates of bacterial metabolism in deep coastal-plain aquifers[J].Appl Environ Microbiol,1990,56:1865-1874.
[10] Chapelle F H.The significance of microbial processes in hydrogeology and geochemistry[J].Hydrogeology Journal,2000,8:41-46.
[11] Lundergard P D,Land L S.Carbon dioxide and organic acids: their role in porosity enhancement and cementation,Paleogene of the Texas Gulf Coast.In: Gautier DL (ed) Roles of organic matter in sediment diagenesis.Society of Economic Paleontologists and Mineralogists,Spec Publ 38,Tulsa,1986,129-146.
[12] Hiebert F K,ennett P B.Microbial control of silicate weathering in organic-rich ground water[J].Science,199 258:278-281.
[13] McMahon P B,Chapelle F H.Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry[J].Nature ,1991a,349:233-235.
[14] McMahon,P B,Chapelle F H.Geochemistry of dissolved inorganic carbon in a coastal-plain aquifer.2.Modeling carbon sources,sinks,and d13C evolution[J].J Hydrol,1991b,127:109-135.
[15] McMahon P B,Chapelle F H,Falls W F.The role of microbial processes in linking sandstone diagenesis with organic-rich clays[J].J Sediment Petrol,199 62(1):1-10.
[16] McMahon P B,Vroblesky D A,Bradley P M.Evidence for enhanced mineral dissolution in organic-acid-rich shallow ground water.Ground Water ,1995,33:207-216.
[17] Mcmahon P B.Aquifer/aquitard interfaces: mixing zones that enhance biogeochemical reactions[J].Hydrogeology journal,200 9:34-43.

 

聲明:轉載此文是出于傳遞更多信息之目的。若有來源標注錯誤或侵犯了您的合法權益,請作者持權屬證明與本網聯系,我們將及時更正、刪除,謝謝。

  使用微信“掃一掃”功能添加“谷騰環保網”

關于“地下水微生物學研究進展綜述 ”評論
昵稱: 驗證碼: 

網(wang)(wang)友評論僅供其表達個人(ren)看法,并不表明谷騰網(wang)(wang)同意其觀點(dian)或證(zheng)實(shi)其描述。

2022’第九屆典型行業有機氣(VOCs)污染治理及監測技術交流會
2022’第九屆典型行業有機氣(VOCs)污染治理及監測技術交流會

十(shi)四五(wu)開篇之年,我國大氣污(wu)染防治進入(ru)第三階段,VOCs治理任務…

2021華南地區重點行業有機廢氣(VOCs)污染治理及監測技術交流會
2021華南地區重點行業有機廢氣(VOCs)污染治理及監測技術交流會

自十三五規劃(hua)以來(lai),全國掀起“VOCs治(zhi)理(li)熱”,尤…

土壤污染防治行動計劃
土壤污染防治行動計劃

5月31日,在經歷了廣泛(fan)征求意見、充分調(diao)研論(lun)證、反復修改完善之…