教师白洁少妇系列h,小小水蜜桃免费影院,丝袜美腿亚洲一区二区,精品国产污污免费网站入口,中文在线最新版天堂

媒體/合作/投稿:010-65815687 點擊這里給我發消息  發郵件

為(wei)(wei)助力環保產業高質量發展,谷(gu)騰環保網隆重推(tui)出《環保行(xing)業“專精特新”技(ji)術與企(qi)業新媒體(ti)傳(chuan)播(bo)(bo)計劃》,七大新媒體(ti)平臺,100萬(wan)次的曝光(guang)率(lv),為(wei)(wei)環保行(xing)業“專精特新”企(qi)業帶(dai)來最(zui)大傳(chuan)播(bo)(bo)和品牌(pai)價值。

    
谷騰環保網 > 水處理 > 解決方案 > 正文

SIPR反應器滲濾液預處理啟動試驗比較研究

更新時間(jian):2015-02-28 22:08 來源:論文(wen)網 作者: 閱讀(du):2641 網友評論0

導(dao)讀(du)::垃圾(ji)填埋(mai)場滲濾(lv)液突出的特性有三個:氨氮濃度高(gao)。序批式(shi)進出水和間(jian)歇(xie)曝氣。依然是預處理(li)反(fan)應(ying)器(qi)。反(fan)應(ying)器(qi)模型啟動試驗(yan)研究。

關鍵詞:滲濾液,序批(pi)式,預處理,啟(qi)動(dong)試驗

1.引言

垃圾填埋場滲(shen)(shen)(shen)濾(lv)液突出(chu)的(de)特性有(you)(you)(you)三個:氨氮濃度高(gao),對微生(sheng)物的(de)繁殖(zhi)和(he)生(sheng)長有(you)(you)(you)抑制作用;磷(lin)濃度低;水(shui)質呈(cheng)非周期性變化(hua)幅度大,使污(wu)水(shui)處(chu)(chu)理(li)(li)(li)裝置難以(yi)適應[1,2,3,4]。傳統(tong)生(sheng)物接(jie)觸(chu)氧(yang)化(hua)工藝(yi)只考慮含(han)碳(tan)有(you)(you)(you)機物和(he)懸浮物的(de)去(qu)除(chu),針(zhen)對高(gao)濃度氮、低碳(tan)氮比(bi)的(de)滲(shen)(shen)(shen)濾(lv)液處(chu)(chu)理(li)(li)(li)效果(guo)并(bing)不理(li)(li)(li)想。重慶(qing)黑(hei)石子垃圾滲(shen)(shen)(shen)濾(lv)液處(chu)(chu)理(li)(li)(li)工藝(yi)(見圖(tu)1)在(zai)調節池(chi)(chi)與接(jie)觸(chu)氧(yang)化(hua)池(chi)(chi)之間增(zeng)加了(le)強化(hua)預(yu)處(chu)(chu)理(li)(li)(li)池(chi)(chi),CODCr、NH4+-N平(ping)均(jun)去(qu)除(chu)率分別為57.8%、52.0%;BOD5/CODCr值從(cong)進水(shui)0.27升至(zhi)出(chu)水(shui)0.33,滲(shen)(shen)(shen)濾(lv)液可(ke)生(sheng)化(hua)性得(de)到(dao)一(yi)定(ding)程度提高(gao),為后續(xu)好氧(yang)處(chu)(chu)理(li)(li)(li)提供了(le)有(you)(you)(you)利條件。

但(dan)黑石子垃圾滲(shen)濾液預處(chu)理(li)(li)工藝需要(yao)進一(yi)步(bu)(bu)完善:TN的平(ping)均去除(chu)率僅為(wei)24.8%;滲(shen)濾液可(ke)生(sheng)化性(xing)有待進一(yi)步(bu)(bu)提(ti)(ti)高;冬季(ji)低溫運行期(qi),處(chu)理(li)(li)效(xiao)果差。針(zhen)對黑石子處(chu)理(li)(li)工藝局限性(xing)序(xu)批式,提(ti)(ti)出序(xu)批式強(qiang)化預處(chu)理(li)(li)反應器(qi)(Sequencing Batch Intensified PretreatmentReactor,SIPR),即通過序(xu)批進水、間歇(xie)曝氣、控制DO和(he)SRT,提(ti)(ti)供較(jiao)(jiao)較(jiao)(jiao)優(you)水解條件,促(cu)進短(duan)程硝化反硝化實現[5,6,7]。

啟動試驗

圖1 黒石子垃圾填埋(mai)場滲濾(lv)液處理工藝流程(cheng)

Fig1 Leachate treatment process of Heishizilandfill

2. SIPR反應器廢水處理理論基礎

SIPR通過序批進(jin)(jin)水(shui)(shui)使(shi)得反(fan)(fan)應器進(jin)(jin)水(shui)(shui)之初(chu)(chu)有(you)(you)機物(wu)濃度(du)(du)較高,利(li)于(yu)(yu)水(shui)(shui)解(jie)(jie)反(fan)(fan)應進(jin)(jin)行,在一個進(jin)(jin)水(shui)(shui)周(zhou)期結束時(shi),水(shui)(shui)解(jie)(jie)兼性(xing)菌(jun)處(chu)于(yu)(yu)饑餓狀態,這種“盛(sheng)宴”和“饑餓”的(de)(de)交替(ti)(ti)環境條件(jian),利(li)于(yu)(yu)提(ti)(ti)高兼性(xing)水(shui)(shui)解(jie)(jie)菌(jun)的(de)(de)生(sheng)物(wu)活(huo)性(xing);批量周(zhou)期進(jin)(jin)水(shui)(shui)可(ke)使(shi)進(jin)(jin)水(shui)(shui)初(chu)(chu)期反(fan)(fan)應器內形成(cheng)高氨氮濃度(du)(du),從而(er)形成(cheng)一定(ding)的(de)(de)游離氨濃度(du)(du),抑(yi)制(zhi)硝酸菌(jun)的(de)(de)生(sheng)長(chang),有(you)(you)利(li)于(yu)(yu)菌(jun)種分離,促進(jin)(jin)短程硝化[8]。低氧(yang)(yang)(yang)曝(pu)氣和攪拌實現(xian)反(fan)(fan)應器中(zhong)的(de)(de)微氧(yang)(yang)(yang)和缺(que)氧(yang)(yang)(yang)交替(ti)(ti)的(de)(de)環境,缺(que)氧(yang)(yang)(yang)狀態可(ke)以抑(yi)制(zhi)溶(rong)(rong)解(jie)(jie)性(xing)有(you)(you)機物(wu)的(de)(de)快(kuai)速去除,同時(shi)促進(jin)(jin)水(shui)(shui)解(jie)(jie),微氧(yang)(yang)(yang)條件(jian)消耗(hao)部分溶(rong)(rong)解(jie)(jie)性(xing)有(you)(you)機物(wu),避免溶(rong)(rong)解(jie)(jie)性(xing)有(you)(you)機物(wu)過度(du)(du)積累,為(wei)下一階段的(de)(de)缺(que)氧(yang)(yang)(yang)水(shui)(shui)解(jie)(jie)提(ti)(ti)供便利(li)條件(jian)[9],從而(er)達到提(ti)(ti)高滲濾液可(ke)生(sheng)化性(xing)的(de)(de)目的(de)(de);間(jian)歇曝(pu)氣使(shi)溶(rong)(rong)解(jie)(jie)氧(yang)(yang)(yang)在時(shi)間(jian)上、空間(jian)上有(you)(you)所(suo)變化,又為(wei)硝化反(fan)(fan)硝化的(de)(de)順利(li)實現(xian)提(ti)(ti)供可(ke)能。

SIPR序批式進出水(shui)(shui)(shui)(shui)和間歇(xie)曝氣,與SBR反應(ying)(ying)(ying)器(qi)有所不(bu)(bu)同(tong):處(chu)(chu)理目的(de)(de)不(bu)(bu)同(tong),SIPR依(yi)然(ran)是(shi)預處(chu)(chu)理反應(ying)(ying)(ying)器(qi),它的(de)(de)第(di)一個(ge)目的(de)(de)是(shi)通(tong)過水(shui)(shui)(shui)(shui)解(jie)反應(ying)(ying)(ying)提高(gao)出水(shui)(shui)(shui)(shui)可生化(hua)性;第(di)二個(ge)目的(de)(de)是(shi)提高(gao)脫氮效(xiao)能,優(you)化(hua)出水(shui)(shui)(shui)(shui)營養配比中國。運(yun)行方式不(bu)(bu)同(tong),SIPR通(tong)過間歇(xie)低強度(du)曝氣,實(shi)現(xian)反應(ying)(ying)(ying)器(qi)微氧(yang)(0.5~1.0mg/L)、缺(que)氧(yang)(0~0.2mg/L)狀態交(jiao)(jiao)替(ti)變化(hua),而SBR反應(ying)(ying)(ying)器(qi)大(da)都為好(hao)氧(yang)、缺(que)氧(yang)交(jiao)(jiao)替(ti)運(yun)行方式;普通(tong)SBR反應(ying)(ying)(ying)器(qi)往往需要較(jiao)(jiao)(jiao)長的(de)(de)進水(shui)(shui)(shui)(shui)、排(pai)水(shui)(shui)(shui)(shui)、沉(chen)淀和閑置(zhi)時(shi)間,SIPR為實(shi)現(xian)反應(ying)(ying)(ying)器(qi)內不(bu)(bu)同(tong)時(shi)間段(duan)較(jiao)(jiao)(jiao)大(da)的(de)(de)濃度(du)梯度(du)序批式,瞬間進水(shui)(shui)(shui)(shui)排(pai)水(shui)(shui)(shui)(shui),沉(chen)淀時(shi)間也相對較(jiao)(jiao)(jiao)短,不(bu)(bu)需閑置(zhi);SIPR控(kong)制相對較(jiao)(jiao)(jiao)短的(de)(de)SRT,旨在實(shi)現(xian)菌種分離,同(tong)時(shi)提高(gao)生物活性。

因此預處(chu)理模(mo)型(xing)選擇SIPR的目的即為通過序批進(jin)水(shui)、間歇曝氣以(yi)及控制DO濃度和(he)SRT,旨在(zai)(zai)提高出(chu)水(shui)可生化(hua)性和(he)脫氮效能。同時在(zai)(zai)常溫和(he)較高溫度條件下旨在(zai)(zai)實(shi)現(xian)短程硝化(hua)反(fan)(fan)硝化(hua),節約能耗和(he)反(fan)(fan)應時間;在(zai)(zai)溫度較低(di)時(進(jin)水(shui)滲濾(lv)液水(shui)溫低(di)于20℃以(yi)下,短程硝化(hua)反(fan)(fan)硝化(hua)實(shi)現(xian)較為困(kun)難)通過序批式運(yun)行,優(you)化(hua)反(fan)(fan)應器運(yun)行參數,探索優(you)化(hua)出(chu)水(shui)可生化(hua)性和(he)營養配(pei)比的實(shi)現(xian)條件。

3. SIPR反應器模型啟(qi)動試驗研(yan)究

3.1SIPR與連續流預處理反應器(qi)啟動試驗

以黑石子垃圾填埋場強(qiang)化預(yu)(yu)處(chu)理(li)(li)(li)(li)工藝(yi)(yi)設(she)計的(de)反應池為原型,采(cai)用(yong)相似條(tiao)件(jian)為保持弗勞德數不變,制作(zuo)SIPR預(yu)(yu)處(chu)理(li)(li)(li)(li)試(shi)驗(yan)模型。為驗(yan)證SIPR反應器是否具有更(geng)高的(de)處(chu)理(li)(li)(li)(li)效能(neng),進(jin)行兩種預(yu)(yu)處(chu)理(li)(li)(li)(li)(與黑石子滲濾(lv)液處(chu)理(li)(li)(li)(li)工藝(yi)(yi)完全相同的(de)連續流預(yu)(yu)處(chu)理(li)(li)(li)(li)工藝(yi)(yi)和SIPR預(yu)(yu)處(chu)理(li)(li)(li)(li)工藝(yi)(yi))同步試(shi)驗(yan)。

兩種反應(ying)器以(yi)不(bu)同方式運行:連續(xu)流預處(chu)理反應(ying)器連續(xu)進水(shui)、連續(xu)曝(pu)氣(qi),DO=0.8±0.2mg/L;SIPR序(xu)批(pi)進水(shui)、間歇曝(pu)氣(qi)(曝(pu)氣(qi)時DO=0.8±0.2mg/L)、攪拌(ban)、靜(jing)置(zhi)和排上清(qing)液,序(xu)批(pi)周期(qi)12h,曝(pu)氣(qi)周期(qi)(曝(pu)氣(qi)和停曝(pu)攪拌(ban)的周期(qi))2h,曝(pu)氣(qi)比(bi)例(li)(li)(反應(ying)器一個(ge)運行周期(qi)的曝(pu)氣(qi)時間占整個(ge)運行周期(qi)的比(bi)例(li)(li))60%。注意控制SIPR的SRT,提高微(wei)生物活(huo)性。

污泥培養初期以(yi)經過稀(xi)釋(shi)(shi)的滲(shen)濾液為(wei)基質,加入適量(liang)葡(pu)萄糖(tang)溶液,控制BOD5/CODCr≥0.5、CODCr/NH4+-N為(wei)10左右,為(wei)微(wei)生物提(ti)供合理營養配比。然后逐步減(jian)小滲(shen)濾液稀(xi)釋(shi)(shi)倍數(shu)和葡(pu)萄糖(tang)投入量(liang)。啟動期間進水CODCr、氨氮、TN、TP約(yue)4059~4987mg/L、221~1526mg/L、289~2045mg/L、1.80~20.35mg/L,CODCr、氨氮容積負荷分別由(you)0.81kg/(m3·d)、0.04kg/(m3·d)提(ti)高至1.12kg/(m3·d)、0.35kg /(m3·d)。

在相同進水(shui)濃(nong)度(du)、溫度(du)(22±5℃)、HRT(4d)條件下,SIPR反應器(qi)(qi)較(jiao)之連續(xu)流(liu)預處理反應器(qi)(qi)能在低氧耗量情況實現更高的(de)(de)有機物去除、氨氮轉(zhuan)化率(lv)和總氮去除率(lv):啟動試驗完成后CODCr、NH3-N去除率(lv)達(da)到(dao)68.17%、69.38%,尤其(qi)是TN去除率(lv)達(da)到(dao)64.08%,碳氮比得到(dao)優化,為后續(xu)好(hao)氧生(sheng)物處理微生(sheng)物提供(gong)良好(hao)的(de)(de)成長(chang)環(huan)境。

3.2啟(qi)動(dong)期間(jian)預處理反(fan)應器(qi)處理效(xiao)能(neng)對比(bi)分析

1)有機物和營(ying)養鹽去除效果對比(bi)分析

SIPR比連續流(liu)預(yu)處(chu)(chu)理池污(wu)染物(wu)去(qu)(qu)除效果高(gao),出(chu)(chu)水(shui)(shui)水(shui)(shui)質更穩定。經28天(tian)的(de)馴(xun)化,SIPR的(de)CODCr去(qu)(qu)除率迅速升高(gao)到(dao)65.24%;32天(tian)馴(xun)化后,SIPR的(de)CODCr去(qu)(qu)除率穩定在68.17%左(zuo)右(you)。啟動三周后SIPR的(de)氨氮(dan)、TN、TP去(qu)(qu)除率迅速上升到(dao)53.26%、44.09%、29.48%序批式,明(ming)顯高(gao)于連續流(liu)預(yu)處(chu)(chu)理池。而且(qie)因硝化菌增殖緩慢,需較長時間才能增殖到(dao)充足的(de)數量(liang),SIPR的(de)TN去(qu)(qu)除率繼續上升。培養50天(tian)后,兩種(zhong)反(fan)應器(qi)均成(cheng)功(gong)啟動,SIPR的(de)平均出(chu)(chu)水(shui)(shui)CODCr、氨氮(dan)、TN、TP約為1564mg/L、461mg/L、698mg/L、5.13mg/L,CODCr、氨氮(dan)、TN、TP去(qu)(qu)除率穩定在68.17%、69.38%、64.08%、34.29%以上;連續流(liu)預(yu)處(chu)(chu)理反(fan)應器(qi)的(de)CODCr、氨氮(dan)、TN、TP去(qu)(qu)除率則保持在63~67%、62~68%、25~29%、29~32%之間,其污(wu)染物(wu)去(qu)(qu)除率,尤其是總(zong)氮(dan)去(qu)(qu)除率明(ming)顯低(di)于SIPR。

啟動試驗

圖2 啟動期(qi)間CODCr處理效能(neng)對比(bi)分析

Fig. 2 CODCr removalperformance contrast

啟動試驗

圖3 啟動(dong)期間氨氮處理效能(neng)對比(bi)分(fen)析

Fig. 3 ammonia nitrogen removalperformance contrast

圖4 啟動期間TN處理效能對比分析

Fig. 4 TN removal performancecontrast

圖(tu)5 啟動期間TP處理效能對比分析

Fig. 5 TP removal performancecontrast in start-up period

圖6 啟動期間SIPR出(chu)水中(zhong)氮素比(bi)例變(bian)化

Fig.6 Transformation of nitrogenproportion of SIPR

2)出水(shui)可生化(hua)性對(dui)比

可(ke)生(sheng)化(hua)(hua)(hua)性(xing)(xing),表明(ming)(ming)滲(shen)(shen)濾(lv)(lv)液(ye)(ye)中(zhong)有(you)機(ji)(ji)污染物(wu)(wu)可(ke)被(bei)(bei)微生(sheng)物(wu)(wu)降(jiang)(jiang)解(jie)(jie)的(de)(de)(de)(de)(de)(de)程(cheng)(cheng)度(du)(du),是評價該滲(shen)(shen)濾(lv)(lv)液(ye)(ye)處理效能(neng)的(de)(de)(de)(de)(de)(de)重(zhong)要(yao)判據。SIPR能(neng)否提(ti)高(gao)滲(shen)(shen)濾(lv)(lv)液(ye)(ye)的(de)(de)(de)(de)(de)(de)可(ke)生(sheng)化(hua)(hua)(hua)性(xing)(xing),可(ke)以(yi)(yi)借助幾(ji)個(ge)指(zhi)標(biao)(biao)進行(xing)(xing)判斷。首先對于以(yi)(yi)顆(ke)(ke)粒(li)態(tai)有(you)機(ji)(ji)物(wu)(wu)含量高(gao)的(de)(de)(de)(de)(de)(de)滲(shen)(shen)濾(lv)(lv)液(ye)(ye)而言,隨著(zhu)反(fan)應(ying)的(de)(de)(de)(de)(de)(de)進行(xing)(xing),顆(ke)(ke)粒(li)態(tai)有(you)機(ji)(ji)物(wu)(wu)被(bei)(bei)轉變為溶(rong)解(jie)(jie)性(xing)(xing)物(wu)(wu)質,這樣勢必(bi)引(yin)起揮發性(xing)(xing)懸浮固體(MLVSS)的(de)(de)(de)(de)(de)(de)增加(jia)。因此(ci)通過(guo)(guo)(guo)比較反(fan)應(ying)前后(hou)的(de)(de)(de)(de)(de)(de)VSS的(de)(de)(de)(de)(de)(de)濃(nong)度(du)(du)變化(hua)(hua)(hua)了解(jie)(jie)可(ke)生(sheng)化(hua)(hua)(hua)性(xing)(xing)提(ti)高(gao)的(de)(de)(de)(de)(de)(de)幅度(du)(du),濃(nong)度(du)(du)差值越大,表明(ming)(ming)反(fan)應(ying)進行(xing)(xing)程(cheng)(cheng)度(du)(du)越好;其(qi)次滲(shen)(shen)濾(lv)(lv)液(ye)(ye)中(zhong)的(de)(de)(de)(de)(de)(de)有(you)機(ji)(ji)物(wu)(wu)被(bei)(bei)水解(jie)(jie)后(hou)的(de)(de)(de)(de)(de)(de)產(chan)物(wu)(wu),一般是有(you)機(ji)(ji)酸(suan)(VFA)[11]。測(ce)定反(fan)應(ying)前后(hou)的(de)(de)(de)(de)(de)(de)VFA濃(nong)度(du)(du)的(de)(de)(de)(de)(de)(de)變化(hua)(hua)(hua)可(ke)以(yi)(yi)直(zhi)接反(fan)映水解(jie)(jie)酸(suan)化(hua)(hua)(hua)程(cheng)(cheng)度(du)(du)[12];由于水解(jie)(jie)反(fan)應(ying)后(hou)的(de)(de)(de)(de)(de)(de)產(chan)物(wu)(wu)大都是酸(suan)性(xing)(xing)物(wu)(wu)質,如此(ci)必(bi)然(ran)引(yin)起廢水pH值的(de)(de)(de)(de)(de)(de)降(jiang)(jiang)低,觀測(ce)pH值的(de)(de)(de)(de)(de)(de)變化(hua)(hua)(hua)也是常(chang)采用的(de)(de)(de)(de)(de)(de)方法之(zhi)一;另有(you)現(xian)象(xiang)需(xu)要(yao)指(zhi)出(chu),滲(shen)(shen)濾(lv)(lv)液(ye)(ye)經過(guo)(guo)(guo)水解(jie)(jie)后(hou)溶(rong)解(jie)(jie)性(xing)(xing)BOD5所(suo)占(zhan)有(you)機(ji)(ji)物(wu)(wu)的(de)(de)(de)(de)(de)(de)比例明(ming)(ming)顯提(ti)高(gao)。這是因為經過(guo)(guo)(guo)水解(jie)(jie)反(fan)應(ying)后(hou)原來非BOD5物(wu)(wu)質,被(bei)(bei)轉變為易于生(sheng)物(wu)(wu)降(jiang)(jiang)解(jie)(jie)的(de)(de)(de)(de)(de)(de)有(you)機(ji)(ji)物(wu)(wu)[13]。由于水解(jie)(jie)的(de)(de)(de)(de)(de)(de)過(guo)(guo)(guo)程(cheng)(cheng)涉及(ji)的(de)(de)(de)(de)(de)(de)細菌種類、反(fan)應(ying)產(chan)物(wu)(wu)較多,反(fan)應(ying)機(ji)(ji)理復雜,所(suo)以(yi)(yi)這幾(ji)個(ge)判斷指(zhi)標(biao)(biao)不(bu)能(neng)完全(quan)代表過(guo)(guo)(guo)程(cheng)(cheng)的(de)(de)(de)(de)(de)(de)全(quan)部。對于一個(ge)實際(ji)的(de)(de)(de)(de)(de)(de)水解(jie)(jie)過(guo)(guo)(guo)程(cheng)(cheng)來說,應(ying)該綜合(he)各(ge)個(ge)指(zhi)標(biao)(biao),從(cong)各(ge)方面了解(jie)(jie)反(fan)應(ying)歷程(cheng)(cheng)。

圖(tu)7 啟動期間反應器出(chu)水可生化性的提高對(dui)比

Fig. 7 Increasing of biologicaldegradation ability contrast in start-up period

SIPR出(chu)水(shui)(shui)(shui)BOD5/CODCr、VFA明顯(xian)高(gao)于連(lian)續流強化(hua)預處理(li)反應器(見(jian)圖(tu)4.8)。SIPR將難降解(jie)大(da)分子(zi)物(wu)質(zhi)(zhi)轉化(hua)成易(yi)(yi)降解(jie)小分子(zi)物(wu)質(zhi)(zhi),使滲(shen)濾液BOD5/CODCr和VFA提高(gao)。啟動后期(前期加入葡萄糖,進水(shui)(shui)(shui)BOD5/CODCr不能真實反映滲(shen)濾液水(shui)(shui)(shui)質(zhi)(zhi)),進水(shui)(shui)(shui)完全為滲(shen)濾液,SIPR的平均BOD5/CODCr由進水(shui)(shui)(shui)的0.251升高(gao)至0.442序批(pi)式,平均VFA由進水(shui)(shui)(shui)的186mg/L提高(gao)到584mg/L,其出(chu)水(shui)(shui)(shui)接近于易(yi)(yi)生物(wu)降解(jie)水(shui)(shui)(shui)質(zhi)(zhi)需要的BOD5/CODCr≥0.5,可(ke)生化(hua)性得到大(da)幅度提高(gao)。連(lian)續流預處理(li)池出(chu)水(shui)(shui)(shui)BOD5/CODCr 為0.303左右,VFA約257mg/L,出(chu)水(shui)(shui)(shui)水(shui)(shui)(shui)質(zhi)(zhi)距(ju)(ju)易(yi)(yi)生物(wu)降解(jie)的差距(ju)(ju)較大(da)。

3)出水營(ying)養配比(bi)(bi)對比(bi)(bi)

氨氮濃(nong)度高、碳(tan)氮比(bi)(bi)低(di)是滲(shen)濾(lv)(lv)液的(de)(de)水質(zhi)特性(xing)之(zhi)一,容易造成微(wei)(wei)生物營養失(shi)衡(heng)。作為滲(shen)濾(lv)(lv)液處(chu)理(li)(li)系統預處(chu)理(li)(li)階段,出水應(ying)(ying)具有(you)合理(li)(li)的(de)(de)營養配(pei)比(bi)(bi),這(zhe)也是后(hou)續(xu)好(hao)氧(yang)處(chu)理(li)(li)工藝(yi)高效運(yun)行的(de)(de)必(bi)要條件。通過對比(bi)(bi)SIPR與連續(xu)流預處(chu)理(li)(li)反應(ying)(ying)器出水碳(tan)氮比(bi)(bi)(由于(yu)氨氮可被水處(chu)理(li)(li)微(wei)(wei)生物直接(jie)加以利用(yong)[14],因(yin)此(ci)以CODCr/NH4+-N作為衡(heng)量(liang)碳(tan)氮比(bi)(bi)的(de)(de)依據),確定更(geng)能(neng)(neng)為后(hou)續(xu)反應(ying)(ying)提供適(shi)宜營養配(pei)比(bi)(bi)的(de)(de)處(chu)理(li)(li)方式。在啟(qi)動試驗中,當進水CODCr/NH4+-N為3.24~3.51時,SIPR、連續(xu)流預處(chu)理(li)(li)反應(ying)(ying)器出水碳(tan)氮比(bi)(bi)分別為3.39~4.03、2.41~2.56。因(yin)此(ci),SIPR比(bi)(bi)連續(xu)流預處(chu)理(li)(li)反應(ying)(ying)器更(geng)能(neng)(neng)為后(hou)續(xu)好(hao)氧(yang)生物處(chu)理(li)(li)提供較好(hao)的(de)(de)營養配(pei)比(bi)(bi)。

圖8 啟動(dong)期間(jian)反應器出水碳氮比的提(ti)高對比

Fig.8 increasing of carbon/nitrogenperformance contrast

3.3污泥特(te)性對比分析

從污(wu)泥(ni)(ni)(ni)濃度、污(wu)泥(ni)(ni)(ni)活性(xing)、污(wu)泥(ni)(ni)(ni)沉降性(xing)能和生物(wu)相等方面對兩(liang)(liang)種反(fan)(fan)(fan)應(ying)器(qi)(qi)的(de)污(wu)泥(ni)(ni)(ni)特性(xing)進行(xing)系統的(de)對比分析。馴(xun)化(hua)2周后(hou)兩(liang)(liang)反(fan)(fan)(fan)應(ying)器(qi)(qi)污(wu)泥(ni)(ni)(ni)MLSS差(cha)別不(bu)大,SIPR的(de)MLSS降至(zhi)6.89g/L,MLVSS/MLSS升(sheng)至(zhi)0.67,SV達(da)17.5%。連續(xu)流(liu)預(yu)處(chu)理(li)反(fan)(fan)(fan)應(ying)器(qi)(qi)降到6.41g/L,MLVSS/MLSS上(shang)升(sheng)到0.63,SV達(da)18.8%。馴(xun)化(hua)3周后(hou)SIPR的(de)MLSS為(wei)(wei)4.14g/L左(zuo)(zuo)右(you);連續(xu)流(liu)預(yu)處(chu)理(li)反(fan)(fan)(fan)應(ying)器(qi)(qi)MLSS降到了(le)3.49g/L。在(zai)28天后(hou)將SIPR的(de)SRT控制在(zai)9d左(zuo)(zuo)右(you),連續(xu)流(liu)預(yu)處(chu)理(li)反(fan)(fan)(fan)應(ying)器(qi)(qi)控制在(zai)10d左(zuo)(zuo)右(you),此(ci)時SIPR污(wu)泥(ni)(ni)(ni)由漿(jiang)糊狀變(bian)為(wei)(wei)絮(xu)狀,顏色變(bian)淺呈棕(zong)褐色,污(wu)泥(ni)(ni)(ni)顆粒大,沉降性(xing)好。50天后(hou),SIPR的(de)MLSS穩定(ding)至(zhi)3.11g/L左(zuo)(zuo)右(you),MLVSS/MLSS穩定(ding)在(zai)0.769左(zuo)(zuo)右(you),SV達(da)16.1%;連續(xu)流(liu)預(yu)處(chu)理(li)反(fan)(fan)(fan)應(ying)器(qi)(qi)MLSS降至(zhi)2.02g/L,MLVSS/MLSS保持在(zai)0.667~0.712,SV達(da)17.4%。啟動(dong)試驗期(qi)間SIPR中的(de)MLVSS、MLVSS/MLSS始終明顯高于連續(xu)流(liu)強化(hua)預(yu)處(chu)理(li)反(fan)(fan)(fan)應(ying)器(qi)(qi),污(wu)泥(ni)(ni)(ni)活性(xing)高;SV值(zhi)更合理(li)序批式,污(wu)泥(ni)(ni)(ni)沉降性(xing)能好中國網。通過(guo)顯微(wei)(wei)鏡檢(jian)測(ce)發現SIPR微(wei)(wei)生物(wu)數(shu)量明顯多于連續(xu)流(liu)預(yu)處(chu)理(li)反(fan)(fan)(fan)應(ying)器(qi)(qi),包(bao)括(kuo)游(you)泳型纖毛(mao)蟲(chong)如豆形蟲(chong)、漫游(you)蟲(chong)、楯纖蟲(chong)和原(yuan)生動(dong)物(wu),生物(wu)相非常活躍。

4. SIPR預處理的(de)高效性分析

試驗證明在相同進水(shui)、溫度(du)、HRT條件(jian)下,SIPR在低能耗(hao)的(de)(de)條件(jian)下較之(zhi)連(lian)續流預處(chu)理反應器(qi)出(chu)水(shui)穩(wen)定,具有更高的(de)(de)有機物(wu)和營(ying)養鹽去除效(xiao)能,出(chu)水(shui)可生化性提高幅(fu)度(du)大,營(ying)養配比合理。

SIPR中(zhong)(zhong)的(de)(de)(de)(de)(de)基(ji)(ji)(ji)質(zhi)濃(nong)(nong)度(du)(du)和微(wei)生(sheng)(sheng)物濃(nong)(nong)度(du)(du)是變(bian)(bian)(bian)化(hua)(hua)的(de)(de)(de)(de)(de)。這期間(jian)(jian)雖然(ran)(ran)反(fan)(fan)(fan)(fan)應(ying)(ying)(ying)(ying)(ying)器內(nei)呈完全混(hun)(hun)(hun)(hun)合狀(zhuang)態(tai)(tai)(tai),但其(qi)基(ji)(ji)(ji)質(zhi)與(yu)微(wei)生(sheng)(sheng)物濃(nong)(nong)度(du)(du)變(bian)(bian)(bian)化(hua)(hua)對于時間(jian)(jian)來說是一(yi)個推(tui)(tui)(tui)(tui)流(liu)(liu)(liu)(liu)過程。在(zai)(zai)(zai)連(lian)續(xu)(xu)流(liu)(liu)(liu)(liu)反(fan)(fan)(fan)(fan)應(ying)(ying)(ying)(ying)(ying)器中(zhong)(zhong),有(you)連(lian)續(xu)(xu)流(liu)(liu)(liu)(liu)完全混(hun)(hun)(hun)(hun)合式(shi)(CSTR)與(yu)推(tui)(tui)(tui)(tui)流(liu)(liu)(liu)(liu)式(shi)(PF)兩種(zhong)極端(duan)的(de)(de)(de)(de)(de)流(liu)(liu)(liu)(liu)態(tai)(tai)(tai)。在(zai)(zai)(zai)CSTR中(zhong)(zhong)的(de)(de)(de)(de)(de)基(ji)(ji)(ji)質(zhi)濃(nong)(nong)度(du)(du)等于出水(shui)基(ji)(ji)(ji)質(zhi)濃(nong)(nong)度(du)(du)。根(gen)據生(sheng)(sheng)化(hua)(hua)反(fan)(fan)(fan)(fan)應(ying)(ying)(ying)(ying)(ying)動(dong)(dong)力(li)(li)學(xue)原理(li)(li),由于反(fan)(fan)(fan)(fan)應(ying)(ying)(ying)(ying)(ying)器中(zhong)(zhong)的(de)(de)(de)(de)(de)基(ji)(ji)(ji)質(zhi)濃(nong)(nong)度(du)(du)很低(di)(di),其(qi)生(sheng)(sheng)化(hua)(hua)反(fan)(fan)(fan)(fan)應(ying)(ying)(ying)(ying)(ying)推(tui)(tui)(tui)(tui)動(dong)(dong)力(li)(li)也很小,反(fan)(fan)(fan)(fan)應(ying)(ying)(ying)(ying)(ying)速(su)率與(yu)去除有(you)機物效率都低(di)(di)。在(zai)(zai)(zai)理(li)(li)想(xiang)的(de)(de)(de)(de)(de)推(tui)(tui)(tui)(tui)移流(liu)(liu)(liu)(liu)反(fan)(fan)(fan)(fan)應(ying)(ying)(ying)(ying)(ying)器中(zhong)(zhong),廢(fei)水(shui)從(cong)(cong)池(chi)(chi)首端(duan)進入,隨推(tui)(tui)(tui)(tui)流(liu)(liu)(liu)(liu)狀(zhuang)態(tai)(tai)(tai)沿反(fan)(fan)(fan)(fan)應(ying)(ying)(ying)(ying)(ying)池(chi)(chi)流(liu)(liu)(liu)(liu)動(dong)(dong),從(cong)(cong)池(chi)(chi)末(mo)端(duan)流(liu)(liu)(liu)(liu)出,但在(zai)(zai)(zai)反(fan)(fan)(fan)(fan)應(ying)(ying)(ying)(ying)(ying)池(chi)(chi)的(de)(de)(de)(de)(de)各斷面上只有(you)橫向(xiang)的(de)(de)(de)(de)(de)混(hun)(hun)(hun)(hun)合,沒(mei)有(you)縱向(xiang)的(de)(de)(de)(de)(de)返混(hun)(hun)(hun)(hun)。在(zai)(zai)(zai)理(li)(li)想(xiang)的(de)(de)(de)(de)(de)推(tui)(tui)(tui)(tui)流(liu)(liu)(liu)(liu)式(shi)反(fan)(fan)(fan)(fan)應(ying)(ying)(ying)(ying)(ying)器中(zhong)(zhong),作為生(sheng)(sheng)化(hua)(hua)反(fan)(fan)(fan)(fan)應(ying)(ying)(ying)(ying)(ying)推(tui)(tui)(tui)(tui)動(dong)(dong)力(li)(li)的(de)(de)(de)(de)(de)基(ji)(ji)(ji)質(zhi)從(cong)(cong)進水(shui)的(de)(de)(de)(de)(de)最(zui)高(gao)濃(nong)(nong)度(du)(du)逐漸降(jiang)解(jie)至出水(shui)時的(de)(de)(de)(de)(de)最(zui)低(di)(di)濃(nong)(nong)度(du)(du)。在(zai)(zai)(zai)整個反(fan)(fan)(fan)(fan)應(ying)(ying)(ying)(ying)(ying)過程,基(ji)(ji)(ji)質(zhi)濃(nong)(nong)度(du)(du)沒(mei)有(you)被稀釋,盡可能保持了最(zui)大的(de)(de)(de)(de)(de)推(tui)(tui)(tui)(tui)動(dong)(dong)力(li)(li)。但在(zai)(zai)(zai)空(kong)間(jian)(jian)上理(li)(li)想(xiang)的(de)(de)(de)(de)(de)推(tui)(tui)(tui)(tui)流(liu)(liu)(liu)(liu)狀(zhuang)態(tai)(tai)(tai)是不能實現(xian)的(de)(de)(de)(de)(de),曝氣池(chi)(chi)中(zhong)(zhong)劇烈的(de)(de)(de)(de)(de)曝氣產生(sheng)(sheng)嚴(yan)重返混(hun)(hun)(hun)(hun)現(xian)象。因此連(lian)續(xu)(xu)流(liu)(liu)(liu)(liu)預(yu)(yu)處(chu)理(li)(li)池(chi)(chi)中(zhong)(zhong)的(de)(de)(de)(de)(de)流(liu)(liu)(liu)(liu)態(tai)(tai)(tai)更接近完全混(hun)(hun)(hun)(hun)合,推(tui)(tui)(tui)(tui)流(liu)(liu)(liu)(liu)式(shi)生(sheng)(sheng)化(hua)(hua)反(fan)(fan)(fan)(fan)應(ying)(ying)(ying)(ying)(ying)速(su)率及(ji)其(qi)推(tui)(tui)(tui)(tui)動(dong)(dong)力(li)(li)大的(de)(de)(de)(de)(de)優(you)點(dian)在(zai)(zai)(zai)連(lian)續(xu)(xu)流(liu)(liu)(liu)(liu)預(yu)(yu)處(chu)理(li)(li)池(chi)(chi)中(zhong)(zhong)遠未發揮出來。而SIPR中(zhong)(zhong),雖然(ran)(ran)在(zai)(zai)(zai)曝氣和攪(jiao)拌階段,其(qi)基(ji)(ji)(ji)質(zhi)濃(nong)(nong)度(du)(du)與(yu)微(wei)生(sheng)(sheng)物濃(nong)(nong)度(du)(du)在(zai)(zai)(zai)反(fan)(fan)(fan)(fan)應(ying)(ying)(ying)(ying)(ying)器的(de)(de)(de)(de)(de)空(kong)間(jian)(jian)變(bian)(bian)(bian)化(hua)(hua)上呈完全混(hun)(hun)(hun)(hun)合狀(zhuang)態(tai)(tai)(tai),但是隨時間(jian)(jian)變(bian)(bian)(bian)化(hua)(hua)卻成(cheng)理(li)(li)想(xiang)的(de)(de)(de)(de)(de)推(tui)(tui)(tui)(tui)流(liu)(liu)(liu)(liu)狀(zhuang)態(tai)(tai)(tai)。這是SIPR較連(lian)續(xu)(xu)流(liu)(liu)(liu)(liu)預(yu)(yu)處(chu)理(li)(li)池(chi)(chi)高(gao)效的(de)(de)(de)(de)(de)原因之一(yi)。

SIPR較連續(xu)流預處理反(fan)應器具有(you)較高(gao)的(de)(de)有(you)機物(wu)(wu)去(qu)除效能。原因是異(yi)養菌和(he)兼性水(shui)解菌世代時間(jian)相對較短,SIPR控制較短SRT,利(li)(li)(li)(li)于(yu)異(yi)養菌和(he)水(shui)解菌的(de)(de)的(de)(de)生(sheng)(sheng)長(chang)繁殖,從而提高(gao)了反(fan)應器中滲濾液的(de)(de)可(ke)生(sheng)(sheng)化性,并利(li)(li)(li)(li)于(yu)有(you)機物(wu)(wu)的(de)(de)穩定去(qu)除;序批進水(shui)方式使(shi)微(wei)生(sheng)(sheng)物(wu)(wu)處于(yu)盛(sheng)宴(yan)、饑餓交替(ti)的(de)(de)狀(zhuang)態(tai)序批式,利(li)(li)(li)(li)于(yu)微(wei)生(sheng)(sheng)物(wu)(wu)活(huo)性的(de)(de)提高(gao);間(jian)歇(xie)供氧(yang)使(shi)反(fan)應器處于(yu)缺氧(yang)、微(wei)氧(yang)交替(ti)狀(zhuang)態(tai),促進SIPR利(li)(li)(li)(li)用(yong)進水(shui)中有(you)機物(wu)(wu)作為碳源進行反(fan)硝化,既可(ke)節約這部分有(you)機物(wu)(wu)氧(yang)化所需(xu)氧(yang)量(liang),又可(ke)提高(gao)有(you)機物(wu)(wu)去(qu)除率。

 SIPR的氨氮(dan)、TN去除率(lv)較連續流預處理反(fan)(fan)(fan)(fan)應(ying)(ying)器(qi)高(gao),而且SIPR抗沖(chong)擊負荷能力強,出水較穩(wen)定。SIPR初始氨氮(dan)濃度較高(gao),促進SIPR短(duan)程硝(xiao)化(hua)(hua)反(fan)(fan)(fan)(fan)硝(xiao)化(hua)(hua),利(li)于低碳氮(dan)比滲濾液的生物(wu)脫氮(dan)。通過周期性曝氣(qi)和(he)停(ting)曝攪(jiao)拌,曝氣(qi)階(jie)段DO濃度控(kong)制在(zai)0.8mg/L左(zuo)右(you),氨氮(dan)被氧(yang)化(hua)(hua),(亞(ya)(ya))硝(xiao)酸(suan)(suan)鹽(yan)積累,為(wei)下一階(jie)段的反(fan)(fan)(fan)(fan)硝(xiao)化(hua)(hua)提供基質;停(ting)曝攪(jiao)拌時(shi),DO濃度控(kong)制在(zai)0~0.2mg/L左(zuo)右(you),反(fan)(fan)(fan)(fan)應(ying)(ying)器(qi)處于缺氧(yang)狀態,反(fan)(fan)(fan)(fan)硝(xiao)化(hua)(hua)菌利(li)用(yong)(yong)污水中(zhong)含碳有機物(wu)作為(wei)電子(zi)供體(ti),將(亞(ya)(ya))硝(xiao)酸(suan)(suan)鹽(yan)氮(dan)還原成為(wei)氮(dan)氣(qi),由(you)此(ci)避(bi)免了硝(xiao)態氮(dan)在(zai)反(fan)(fan)(fan)(fan)應(ying)(ying)器(qi)中(zhong)的過度積累,利(li)于好氧(yang)階(jie)段的硝(xiao)化(hua)(hua)反(fan)(fan)(fan)(fan)應(ying)(ying)。同(tong)時(shi)控(kong)制反(fan)(fan)(fan)(fan)應(ying)(ying)器(qi)的SRT在(zai)8~10d左(zuo)右(you),確保反(fan)(fan)(fan)(fan)應(ying)(ying)器(qi)內生物(wu)量平衡(heng),以實現(xian)(xian)生物(wu)恒化(hua)(hua)器(qi)的功(gong)能中(zhong)國(guo)網(wang)。硝(xiao)化(hua)(hua)產酸(suan)(suan),反(fan)(fan)(fan)(fan)硝(xiao)化(hua)(hua)作用(yong)(yong)產堿,通過硝(xiao)化(hua)(hua)反(fan)(fan)(fan)(fan)硝(xiao)化(hua)(hua)作用(yong)(yong)在(zai)同(tong)一反(fan)(fan)(fan)(fan)應(ying)(ying)器(qi)中(zhong)實現(xian)(xian),SIPR從空間(jian)上為(wei)反(fan)(fan)(fan)(fan)應(ying)(ying)器(qi)實現(xian)(xian)內部酸(suan)(suan)堿平衡(heng)創造條件。因此(ci)SIPR脫氮(dan)效能較好,

常規廢水生(sheng)(sheng)(sheng)物除(chu)磷(lin)是通(tong)過(guo)厭氧(yang)(yang)、好氧(yang)(yang)交替(ti)操作(zuo),利(li)用(yong)(yong)活性污泥超量吸磷(lin)特性,使(shi)細胞含磷(lin)量相當高(gao)的(de)(de)(de)細菌(jun)(jun)(jun)(jun)群體(ti)(ti)能夠在(zai)處理系(xi)(xi)統的(de)(de)(de)基質競爭(zheng)中取(qu)(qu)得(de)優勢(shi),從而(er)達到除(chu)磷(lin)目的(de)(de)(de)。生(sheng)(sheng)(sheng)物除(chu)磷(lin)中的(de)(de)(de)聚磷(lin)菌(jun)(jun)(jun)(jun)能夠過(guo)量地、在(zai)數(shu)量上超過(guo)其(qi)生(sheng)(sheng)(sheng)理需要從外部(bu)(bu)環境攝取(qu)(qu)磷(lin),并(bing)將磷(lin)以(yi)(yi)聚合(he)的(de)(de)(de)形態貯藏在(zai)菌(jun)(jun)(jun)(jun)體(ti)(ti)內(nei),形成(cheng)(cheng)高(gao)磷(lin)污泥序批式,排(pai)出系(xi)(xi)統外。在(zai)好氧(yang)(yang)條(tiao)件下(xia),聚磷(lin)菌(jun)(jun)(jun)(jun)有(you)氧(yang)(yang)呼吸,不斷(duan)地氧(yang)(yang)化分(fen)(fen)(fen)解其(qi)體(ti)(ti)內(nei)儲存(cun)的(de)(de)(de)有(you)機物,同時也(ye)不斷(duan)地通(tong)過(guo)主動輸送的(de)(de)(de)方式,從外部(bu)(bu)環境向其(qi)體(ti)(ti)內(nei)攝取(qu)(qu)有(you)機物,由(you)于(yu)氧(yang)(yang)化分(fen)(fen)(fen)解,又不斷(duan)放(fang)出能量,能量為ADP所獲取(qu)(qu),并(bing)結合(he)H3PO4而(er)合(he)成(cheng)(cheng)ATP。H3PO4除(chu)小(xiao)部(bu)(bu)分(fen)(fen)(fen)是聚磷(lin)菌(jun)(jun)(jun)(jun)分(fen)(fen)(fen)解其(qi)體(ti)(ti)內(nei)聚磷(lin)酸鹽而(er)取(qu)(qu)得(de),大部(bu)(bu)分(fen)(fen)(fen)是聚磷(lin)菌(jun)(jun)(jun)(jun)利(li)用(yong)(yong)能量,在(zai)透膜酶的(de)(de)(de)催化作(zuo)用(yong)(yong)下(xia),從外部(bu)(bu)將環境中的(de)(de)(de)H3PO4攝入體(ti)(ti)內(nei),一(yi)部(bu)(bu)分(fen)(fen)(fen)用(yong)(yong)于(yu)合(he)成(cheng)(cheng)ATP,另一(yi)部(bu)(bu)分(fen)(fen)(fen)用(yong)(yong)于(yu)合(he)成(cheng)(cheng)聚磷(lin)酸鹽。在(zai)厭氧(yang)(yang)條(tiao)件下(xia),聚磷(lin)菌(jun)(jun)(jun)(jun)體(ti)(ti)內(nei)ATP進行水解,放(fang)出H3PO4和能量,形成(cheng)(cheng)ADP[48]。SIPR基質濃度高(gao),微生(sheng)(sheng)(sheng)物活性高(gao),使(shi)磷(lin)不斷(duan)轉化為微生(sheng)(sheng)(sheng)物組分(fen)(fen)(fen),并(bing)以(yi)(yi)污泥形式被沉淀去(qu)除(chu);同時反(fan)應器中混合(he)液(ye)能夠周期性處于(yu)缺氧(yang)(yang)、好氧(yang)(yang)交替(ti)狀態,利(li)于(yu)生(sheng)(sheng)(sheng)物除(chu)磷(lin),具(ju)有(you)比連續(xu)流預處理反(fan)應器略高(gao)的(de)(de)(de)TP去(qu)除(chu)率。

SIPR的(de)水解使復雜大分(fen)(fen)子有機(ji)物通過產酸菌(jun)胞(bao)外酶的(de)作用(yong)轉化為(wei)簡(jian)單的(de)可溶性(xing)(xing)小分(fen)(fen)子,如多(duo)糖(tang)水解為(wei)單糖(tang),蛋白質分(fen)(fen)解為(wei)氨(an)基酸,脂肪(fang)轉化為(wei)鏈脂肪(fang)酸和丙(bing)三醇等。同時(shi)兼性(xing)(xing)或專性(xing)(xing)的(de)產酸菌(jun)將(jiang)水解產物轉化為(wei)短鏈有機(ji)酸、醇、醛等中性(xing)(xing)化合物,碳(tan)水化合物降(jiang)解為(wei)脂肪(fang)酸,有機(ji)酸產生(sheng)(sheng),VFA值升高(gao)。SIPR間歇(xie)曝氣,反(fan)應(ying)器中DO濃(nong)(nong)度、pH值、氧化還(huan)原電位ORP呈周(zhou)期性(xing)(xing)變化序批式,尤其是停曝攪(jiao)拌DO濃(nong)(nong)度降(jiang)低,ORP降(jiang)低,同時(shi)pH值略有上升,促(cu)進水解反(fan)應(ying)繼續進行,使滲(shen)濾液可生(sheng)(sheng)化性(xing)(xing)得到進一步(bu)(bu)提高(gao)。由于SIPR具有較(jiao)好的(de)除氨(an)脫(tuo)氮效能,出水營養(yang)配比得到進一步(bu)(bu)優化,為(wei)后續好氧處理創造較(jiao)好的(de)條件。

同(tong)等(deng)條件(jian)下培養,SIPR中污泥濃(nong)度高于連(lian)續流預處(chu)理反(fan)應(ying)器,生物種群豐富,污泥活性高,這也是SIPR具有(you)更(geng)高去除效(xiao)能的原因之一(yi)。

5.結論

通(tong)過采用序批進水(shui)、間(jian)歇曝氣以及(ji)控制(zhi)DO濃度(du)和SRT的(de)運行方(fang)(fang)式(shi),水(shui)解反(fan)(fan)應和硝化反(fan)(fan)硝化在SIPR反(fan)(fan)應器(qi)中得以共同(tong)實現,同(tong)步提高(gao)了預處(chu)理(li)(li)出水(shui)的(de)可生(sheng)化性和預處(chu)理(li)(li)反(fan)(fan)應器(qi)的(de)脫(tuo)氮效能;SIPR較連續(xu)流預處(chu)理(li)(li)反(fan)(fan)應器(qi)具(ju)有更高(gao)的(de)微生(sheng)物(wu)活性,使預處(chu)理(li)(li)出水(shui)營養配比良好,為后續(xu)好氧(yang)生(sheng)物(wu)處(chu)理(li)(li)創(chuang)造(zao)了有利條件,是(shi)垃圾滲濾液處(chu)理(li)(li)中優先選擇的(de)預處(chu)理(li)(li)方(fang)(fang)式(shi)。

參考文獻

[1]Logemann S, Schantl J, Bijvank S, et al.Molecular microbial diversity innitrifying reactor system without sludge retention. FEMS, Microbil Ecol,1998,27:239-249

[2]Kowalchuk G A, Bodelier PL E, Heilig G H J, et al. Community analysis ofammonium oxidizing bacterium, inrelation oxygen availability in soils androot-oxyenated sediments, using PCR, DGGE and oligonuchotid probehybridization. FEMS, Microbil Ecol, 1998,24:339-350

[3]Regan J M, Harington G W, Noguera D R. Ammonia and denitrite-oxidizingbacterial communities in a pilot-scale chloraminsted drinking waterdistribution system. Appl Environ Microbiol, 2002,68(1):73-81

[4]Vreas L, Forney L, Daae FL, et al .Distribution of bacterial plankton inmeromictic lake saelevannet, as determined by denaturing gradient gelelectophoresis of PCR-amplified genefragment scoding for 16S rRNA. Appl EnvrionMicrobiol, 1997,63(8):3367-3373

[5]Hellinga C, Van Loosdnecht M C M, Heijnen J J. The Sharon process for nitrogenremoval in ammonium rich wastewater. Universiteit Gent, 1997, 62(40):1743-1750.

[6]Hellinga C, Schellen A.A.J.C, Mulder JW, et. al. The SHARON process: aninnovative method for nitrogen removal from ammonium-rich waste water. WaterScience and Technology, 1998,37(9):135-142

[7]Mulder JW. Full scale application of the Sharon process for treatment ofrejection water of digested sludge dewatering. Proc, First IWA Conference, London, 2000, 267-274

[8]鄧黛青.城(cheng)市垃圾焚燒廠垃圾儲坑滲濾液(ye)生物處(chu)理技術研究(jiu)[M].同濟大學博士學位.2006.

[9]MichaelN, Annette B. Kinetics,diffusional limitation and microscale distribution ofchemistry and organisms in a CANON reactor[J]. FEMS Microbiology Ecology,2005,51(2):247-256

[10]MichaelW, Alexander L. Bacterial community composition and function in sewagetreatment systems[J]. Current opinion in Biotechnology, 2002,13(3):218-227

[11]BockE and Koops H P. The genus Nitrobacter and relater genera. In: Balowa A etal.The Prokaryotes:An Evolving Electronis Database for to MicrobiologicalCommunity. 3'd edition [J]. Springer-Verlag,NewYork, 2001.

[12]Antonious.P., Hamilton J., Koopman B.et al. Effect of temperature and pH on theeffective maximum specific growth rate of nitrifying bacteria. Wat.Res,1990,24(1): 97-101

[13]Schreeder,E.D. Water and wastewater treatment. McCraw-Hill,inc., 1977

[14]Mosher F A. Leachate recirculation for rapid stabilization of landfills: Theoryand practice[J]. Water Qual Intern, 1997 (11/I2):33-36

聲明:轉載此文是出于傳遞更多信息之目的。若有來源標注錯誤或侵犯了您的合法權益,請作者持權屬證明與本網聯系,我們將及時更正、刪除,謝謝。

  使用微信“掃一掃”功能添加“谷騰環保網”

關于“SIPR反應器滲濾液預處理啟動試驗比較研究 ”評論
昵稱: 驗證碼: 

網(wang)友評論僅供其(qi)(qi)(qi)表達(da)個人看(kan)法(fa),并不表明谷騰網(wang)同(tong)意其(qi)(qi)(qi)觀點(dian)或證實其(qi)(qi)(qi)描述。

2022’第九屆典型行業有機氣(VOCs)污染治理及監測技術交流會
2022’第九屆典型行業有機氣(VOCs)污染治理及監測技術交流會

十四五開篇之年,我國大氣污染防治進入第三階段,VOCs治理任務…

2021華南地區重點行業有機廢氣(VOCs)污染治理及監測技術交流會
2021華南地區重點行業有機廢氣(VOCs)污染治理及監測技術交流會

自十三五規劃以來,全(quan)國掀起“VOCs治理熱”,尤…

土壤污染防治行動計劃
土壤污染防治行動計劃

5月31日,在(zai)經歷了廣泛征求意見、充分調研(yan)論證(zheng)、反(fan)復修改完善之…